Publications
3561

Sort by date names
Browse by authors subjects journals

Seasonal Patterns in the Frequency of Candidatus Liberibacter Asiaticus in Populations of Diaphorina citri (Hemiptera: Psyllidae) in Florida

Citation
Ebert et al. (2023). Insects 14 (9)
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
Candidatus Liberibacter asiaticus (CLas) is one of the putative causal agents of huanglongbing, which is a serious disease in citrus production. The pathogen is transmitted by Diaphorina citri Kuwayama (Hemiptera: Psyllidae). As an observational study, six groves in central Florida and one grove at the southern tip of Florida were sampled monthly from January 2008 through February 2012 (50 months). The collected psyllids were sorted by sex and abdominal color. Disease prevalence in adults peaked

‘Candidatus Phytoplasma ziziphi’ Changes the Metabolite Composition of Jujube Tree Leaves and Affects the Feeding Behavior of Its Insect Vector Hishimonus hamatus Kuoh

Citation
Liu et al. (2023). Insects 14 (9)
Names
Ca. Phytoplasma ziziphi
Abstract
Hishimonus hamatus Kuoh is a leafhopper species native to China that feeds on Chinese jujube leaves. This leafhopper species has been verified to transmit jujube witches’ broom (JWB) disease, caused by phytoplasma, a fatal plant pathogen, which belongs to the phytoplasma subgroup 16SrV-B. The transmission of JWB phytoplasma largely relies on the feeding behavior of piercing–sucking leafhoppers. However, the specific mechanisms behind how and why the infection of JWB influences the feeding behavi

An endolysin gene from Candidatus Liberibacter asiaticus confers dual resistance to huanglongbing and citrus canker

Citation
Xu et al. (2023). Horticulture Research 10 (9)
Names
Ca. Liberibacter asiaticus
Abstract
Abstract The most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhi

CandidatusSiderophilus nitratireducens”: a psychrophilic,nap-dependent nitrate-reducing iron oxidizer within the new order Siderophiliales

Citation
Corbera-Rubio et al. (2023).
Names
Ca. Siderophilus nitratireducens
Abstract
AbstractNitrate leaching from agricultural soils is increasingly found in groundwater, a primary source of drinking water worldwide. This nitrate influx can potentially stimulate the biological oxidation of iron in anoxic groundwater reservoirs. Nitrate-reducing iron-oxidizing (NRFO) bacteria have been extensively studied in laboratory settings, yet their ecophysiology in natural environments remains largely unknown. To this end, we established a pilot-scale filter on nitrate-rich groundwater to

Candidatus<scp>Tisiphia</scp>’ is a widespread <scp>Rickettsiaceae</scp> symbiont in the mosquito Anopheles plumbeus (<scp>Diptera: Culicidae</scp>)

Citation
Davison et al. (2023). Environmental Microbiology
Names
“Tisiphia”
Abstract
AbstractSymbiotic bacteria can alter host biology by providing protection from natural enemies, or alter reproduction or vectoral competence. Symbiont‐linked control of vector‐borne disease in Anopheles has been hampered by a lack of symbioses that can establish stable vertical transmission in the host. Previous screening found the symbiont ‘Candidatus Tisiphia’ in Anopheles plumbeus, an aggressive biter and potential secondary vector of malaria parasites and West Nile virus. We screened samples

A ‘Candidatus Liberibacter solanacearum’ Haplotype B-Specific Family of Candidate Bacterial Effectors

Citation
Levy et al. (2023). Phytopathology® 113 (9)
Names
“Liberibacter solanacearum”
Abstract
‘ Candidatus Liberibacter solanacearum’ (Lso) is a phloem-limited pathogen associated with devastating diseases in members of the Solanaceae and Apiaceae and vectored by several psyllid species. Different Lso haplotypes have been identified, and LsoA and LsoB are responsible for diseases in Solanaceae crops. Our efforts are aimed at identifying pathogenicity factors used by this bacterium to thrive in different hosts. Bacterial secreted proteins can play a role in host colonization or the manip