Publications
3506

Sort by date names
Browse by authors subjects journals

Effects of insecticides and repellents on the spread of ‘Candidatus Phytoplasma solani’ under laboratory and field conditions

Citation
Riedle-Bauer, Brader (2023). Journal of Plant Diseases and Protection 130 (5)
Names
Ca. Phytoplasma solani
Abstract
AbstractRecent outbreaks of ‘Candidatus Phytoplasma solani’ resulted in severe losses in potatoes, vegetable crops and grapevines in certain regions of Austria and constituted a major challenge for seed potato production. Therefore, the effects of various insecticides and insect deterrents on pathogen spread were studied both in laboratory and field experiments from 2018 to 2021. In laboratory transmission experiments, field captured Hyalesthes obsoletus were caged on differently treated Cathara

Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’

Citation
Zhang et al. (2023). Nature Communications 14 (1)
Names
Ca. Methanoperedens nitroreducens
Abstract
AbstractAnaerobic methanotrophic archaea (ANME) carry out anaerobic oxidation of methane, thus playing a crucial role in the methane cycle. Previous genomic evidence indicates that multi-heme c-type cytochromes (MHCs) may facilitate the extracellular electron transfer (EET) from ANME to different electron sinks. Here, we provide experimental evidence supporting cytochrome-mediated EET for the reduction of metals and electrodes by ‘Candidatus Methanoperedens nitroreducens’, an ANME acclimated to

Phylogenomics and ancestral reconstruction of Korarchaeota reveals genomic adaptation to habitat switching

Citation
Tahon et al. (2023).
Names
“Korarchaeum calidifontum” “Caldabyssikora” “Korarchaeum” “Caldabyssikoraceae” “Caldabyssikora taketomiensis” “Caldabyssikora guaymasensis” “Thermotainarokoraceae” “Thermotainarokora guaymasensis” “Thermotainarokora taketomiensis” “Hydrocaminikoraceae”
Abstract
AbstractOur knowledge of archaeal diversity and evolution has expanded rapidly in the past decade. However, hardly any genomes of the phylum Korarchaeota have been obtained due to the difficulty in accessing their natural habitats and – possibly – their limited abundance. As a result, many aspects of Korarchaeota biology, physiology and evolution remain enigmatic. Here, we expand this phylum with five high-quality metagenome-assembled genomes. This improved taxon sampling combined with sophistic

Oxygen Uptake Rate as an Indicator of the Substrates Utilized by Candidatus Accumulibacter

Citation
Dorofeev et al. (2023).
Names
“Accumulibacter”
Abstract
Candidatus Accumulibacter belongs to phosphate-accumulating organisms (PAO) which exhibit cyclic metabolism and are capable of intracellular polyphosphate accumulation and their hydrolysis under feast-famine anaerobic-aerobic cycling. In consortia of activated sludge microorganisms, these bacteria are responsible for enhanced biological phosphorus removal (EBPR). The spectrum of the substrates used by Ca. Accumulibacter remains insufficiently studied. It was investigated by measuring the oxygen

Draft Genome Sequence of Novel Candidatus Ornithobacterium hominis Carrying Antimicrobial Resistance Genes in Egypt

Citation
Ahmed et al. (2023).
Names
Ca. Ornithobacterium hominis
Abstract
Abstract Background Candidatus Ornithobacterium hominis (O. hominis), which was found in Egyptian nasopharyngeal swabs but remains unidentified, has been associated with respiratory disorders in humans. Herein, we presented two draft genome assemblies of O. hominis that were extracted from metagenomic data using the Illumina sequencing method. The primary goal of this study was to present the first O. hominis genome sequence from Egyptian populations. Results The genome size was estima

Alternative Tissue Sampling for Improved Detection of Candidatus Liberibacter asiaticus

Citation
Hajeri et al. (2023). Plants 12 (19)
Names
Ca. Liberibacter asiaticus
Abstract
Early detection and prompt response are key factors in the eradication of ‘huanglongbing’ (HLB) in California. Currently, qPCR testing of leaf tissue guides the removal of infected trees. However, because of the uneven distribution of ‘Candidatus Liberibacter asiaticus’ (CLas) in an infected tree and asymptomatic infection, selecting the best leaves to sample, from a mature tree with more than 200,000 estimated leaves, is a major hurdle for timely detection. The goal of this study was to address