Transgenic Sweet Orange Expressing the Sarcotoxin IA Gene Produces High-Quality Fruit and Shows Tolerance to ‘Candidatus Liberibacter asiaticus’


Citation
Longhi et al. (2022). International Journal of Molecular Sciences 23 (16)
Names
Ca. Liberibacter asiaticus
Subjects
Catalysis Computer Science Applications General Medicine Inorganic Chemistry Molecular Biology Organic Chemistry Physical and Theoretical Chemistry Spectroscopy
Abstract
Huanglongbing (otherwise known as HLB or greening) is currently the most devastating citrus disease worldwide. HLB is primarily associated with the phloem-inhabiting bacterium ‘Candidatus Liberibacter asiaticus’ (CLas). Currently, there are no citrus species resistant to CLas. Genetic transformation is one of the most effective approaches used to induce resistance against plant diseases. Antimicrobial peptides (AMPs) have shown potential breakthroughs to improve resistance to bacterial diseases in plants. In this paper, we confirm the Agrobacterium-mediated transformation of Pera sweet orange expressing the AMP sarcotoxin IA (stx IA) gene isolated from the flesh fly Sarcophaga peregrina and its reaction to CLas, involving plant performance and fruit quality assessments. Four independent transgenic lines, STX-5, STX-11, STX-12, and STX-13, and a non-transgenic control, were graft-inoculated with CLas. Based on our findings, none of the transgenic plants were immune to CLas. However, the STX-5 and STX-11 lines showed reduced susceptibility to HLB with mild disease symptoms and low incidence of plants with the presence of CLas. Fruit and juice quality were not affected by the genetic transformation. Further, no residues of the sarcotoxin IA protein were found in the juice of the STX-11 and STX-12 fruits, though detected in the juice of the STX-5 and STX-13 lines, as revealed by the immunoblotting test. However, juices from all transgenic lines showed low traces of sarcotoxin IA peptide in its composition. The accumulation of this peptide did not cause any deleterious effects on plants or in fruit/juice. Our findings reinforce the challenges of identifying novel approaches to managing HLB.
Authors
Publication date
2022-08-18
DOI
10.3390/ijms23169300