Recirculating aquaculture systems (RAS) are promising candidates for the sustainable development of the aquaculture industry. A current limitation of RAS is the production and potential accumulation of nitrogenous wastes, ammonium (NH4+), nitrite (NO2−) and nitrate (NO3−), which could affect fish health and welfare. In a previous experiment, we have demonstrated that the marine anammox bacteria Candidatus Scalindua was a promising candidate to treat the wastewater (WW) of marine, cold-water RAS. However, the activity of the bacteria was negatively impacted after a direct exposure to RAS WW. In the current study, we have further investigated the potential of Ca. Scalindua to treat marine RAS WW in a three-phase experiment. In the first phase (control, 83 days), Ca. Scalindua was fed a synthetic feed, enriched in NH4+, NO2− and trace element (TE) mix. Removal rates of 98.9% and 99.6% for NH4+ and NO2−, respectively, were achieved. In the second phase (116 days), we gradually increased the exposure of Ca. Scalindua to nitrogen-enriched RAS WW over a period of about 80 days. In the last phase (79 days), we investigated the needs of TE supplementation for the Ca. Scalindua after they were fully acclimated to 100% RAS WW. Our results show that the gradual exposure of Ca. Scalindua resulted in a successful acclimation to 100% RAS WW, with maintained high removal rates of both NH4+ and NO2− throughout the experiment. Despite a slight decrease in relative abundance (from 21.4% to 16.7%), Ca. Scalindua remained the dominant species in the granules throughout the whole experiment. We conclude that Ca. Scalindua can be successfully used to treat marine RAS WW, without the addition of TE, once given enough time to acclimate to its new substrate. Future studies need to determine the specific needs for optimal RAS WW treatment by Ca. Scalindua at pilot scale.
The present study investigated the phylogenetic affiliation and physiological characteristics of bacteria responsible for anaerobic ammonium oxidization (anammox); these bacteria were enriched in an anammox reactor with a nitrogen removal rate of 26.0 kg N m−3day−1. The anammox bacteria were identified as representing ‘CandidatusBrocadia sinica’ on the basis of phylogenetic analysis of rRNA operon sequences. Physiological characteristics examined were growth rate, kinetics of ammonium oxidation and nitrite reduction, temperature, pH and inhibition of anammox. The maximum specific growth rate (μmax) was 0.0041 h−1, corresponding to a doubling time of 7 days. The half-saturation constants (Ks) for ammonium and nitrite of ‘Ca.B. sinica’ were 28±4 and 86±4 µM, respectively, higher than those of ‘CandidatusBrocadia anammoxidans’ and ‘CandidatusKuenenia stuttgartiensis’. The temperature and pH ranges of anammox activity were 25–45 °C and pH 6.5–8.8, respectively. Anammox activity was inhibited in the presence of nitrite (50 % inhibition at 16 mM), ethanol (91 % at 1 mM) and methanol (86 % at 1 mM). Anammox activities were 80 and 70 % of baseline in the presence of 20 mM phosphorus and 3 % salinity, respectively. The yield of biomass and dissolved organic carbon production in the culture supernatant were 0.062 and 0.005 mol C (molNH4+)−1, respectively. This study compared physiological differences between three anammox bacterial enrichment cultures to provide a better understanding of anammox niche specificity in natural and man-made ecosystems.