Tamarit, Daniel


Publications
4

Phylogenomics and ancestral reconstruction of Korarchaeota reveals genomic adaptation to habitat switching

Citation
Tahon et al. (2023).
Names
“Hydrocaminikoraceae” “Thermotainarokora taketomiensis” “Thermotainarokora guaymasensis” “Thermotainarokoraceae” “Caldabyssikora guaymasensis” “Caldabyssikora taketomiensis” “Caldabyssikoraceae” “Korarchaeum” “Caldabyssikora” “Korarchaeum calidifontum”
Abstract
AbstractOur knowledge of archaeal diversity and evolution has expanded rapidly in the past decade. However, hardly any genomes of the phylum Korarchaeota have been obtained due to the difficulty in accessing their natural habitats and – possibly – their limited abundance. As a result, many aspects of Korarchaeota biology, physiology and evolution remain enigmatic. Here, we expand this phylum with five high-quality metagenome-assembled genomes. This improved taxon sampling combined with sophistic

A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses

Citation
Tamarit et al. (2022). Nature Microbiology 7 (7)
Names
Ca. Odinarchaeum yellowstonii
Abstract
AbstractAsgard archaea have recently been identified as the closest archaeal relatives of eukaryotes. Their ecology, and particularly their virome, remain enigmatic. We reassembled and closed the chromosome of Candidatus Odinarchaeum yellowstonii LCB_4, through long-range PCR, revealing CRISPR spacers targeting viral contigs. We found related viruses in the genomes of diverse prokaryotes from geothermal environments, including other Asgard archaea. These viruses open research avenues into the ec

A closed Candidatus Odinarchaeum genome exposes Asgard archaeal viruses

Citation
Tamarit et al. (2021).
Names
Ca. Odinarchaeum yellowstonii
Abstract
Asgard archaea have recently been identified as the closest archaeal relatives of eukaryotes. Their ecology remains enigmatic, and their virome, completely unknown. Here, we describe the closed genome of Ca. Odinarchaeum yellowstonii LCB_4, and, from this, obtain novel CRISPR arrays with spacer targets to several viral contigs. We find related viruses in sequence data from thermophilic environments and in the genomes of diverse prokaryotes, including other Asgard archaea. These novel viruses ope

The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation

Citation
Neuvonen et al. (2016). Scientific Reports 6 (1)
Names
“Tokpelaia hoelldobleri” “Tokpelaia”
Abstract
AbstractGut-associated microbiota of ants include Rhizobiales bacteria with affiliation to the genus Bartonella. These bacteria may enable the ants to fix atmospheric nitrogen, but no genomes have been sequenced yet to test the hypothesis. Sequence reads from a member of the Rhizobiales were identified in the data collected in a genome project of the ant Harpegnathos saltator. We present an analysis of the closed 1.86 Mb genome of the ant-associated bacterium, for which we suggest the species na