Anaerobic methane metabolism is among the hallmarks of Archaea, originating very early in their evolution. Here, we show that the ancestor of methane metabolizers was an autotrophic CO
2
-reducing hydrogenotrophic methanogen that possessed the two main complexes, methyl-CoM reductase (Mcr) and tetrahydromethanopterin-CoM methyltransferase (Mtr), the anaplerotic hydrogenases Eha and Ehb, and a set of other genes collectively called “methanogenesis markers” but could not oxidize alkanes. Overturning recent inferences, we demonstrate that methyl-dependent hydrogenotrophic methanogenesis has emerged multiple times independently, either due to a loss of Mtr while Mcr is inherited vertically or from an ancient lateral acquisition of Mcr. Even if Mcr is lost, Mtr, Eha, Ehb, and the markers can persist, resulting in mixotrophic metabolisms centered around the Wood-Ljungdahl pathway. Through their methanogenesis remnants, Thorarchaeia and two newly reconstructed order-level lineages in Archaeoglobi and Bathyarchaeia act as metabolically versatile players in carbon cycling of anoxic environments across the globe.
AbstractMost prokaryotes are not available as pure cultures and therefore ineligible for naming under the rules and recommendations of the International Code of Nomenclature of Prokaryotes (ICNP). Here we summarize the development of the SeqCode, a code of nomenclature under which genome sequences serve as nomenclatural types. This code enables valid publication of names of prokaryotes based upon isolate genome, metagenome-assembled genome or single-amplified genome sequences. Otherwise, it is similar to the ICNP with regard to the formation of names and rules of priority. It operates through the SeqCode Registry (https://seqco.de/), a registration portal through which names and nomenclatural types are registered, validated and linked to metadata. We describe the two paths currently available within SeqCode to register and validate names, including Candidatus names, and provide examples for both. Recommendations on minimal standards for DNA sequences are provided. Thus, the SeqCode provides a reproducible and objective framework for the nomenclature of all prokaryotes regardless of cultivability and facilitates communication across microbiological disciplines.