Clover, G. R. G.


Publications (6)

First Report of ‘Candidatus Phytoplasma australiense’ in Potato

Citation
Liefting et al. (2009). Plant Disease 93 (9)
Names
Ca. Phytoplasma australiense
Subjects
Agronomy and Crop Science Plant Science
Abstract
In January of 2009, potato plants (Solanum tuberosum) from a commercial crop in the Waikato Region, New Zealand were observed to have symptoms of upward rolling and purpling of the leaves. The symptoms appeared similar to those of “zebra chip”, a disorder of potato recently found to be associated with ‘Candidatus Liberibacter solanacearum’ in New Zealand and the United States (4). Total DNA from the leaf midveins and tubers from one of the symptomatic plants was separately extracted with an InviMag Plant DNA Mini Kit (Invitek GmbH, Berlin, Germany) and a KingFisher mL workstation (Thermo Scientific, Waltham, MA). DNA extracted from leaf midveins and tubers tested negative for ‘Ca. L. solanacearum’ by nested-PCR using primer pair OA2/OI2c (4) followed by Lib16S01F/Lib16S01R (5′-TTCTACGGGATAACGCACGG-3′ and 5′-CGTCAGTATCAGGCCAGTGAG-3′), which amplifies a 580-bp region of the 16S rRNA gene. However, DNA extracted from the tuber tissue tested positive for phytoplasma by TaqMan real-time PCR (3). No phytoplasma was detected in the DNA extracted from leaf tissue. The 16S rRNA gene, 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene of the phytoplasma were amplified with primers P1/P7 (1). The PCR product was cloned into the pCR 4-TOPO vector (Invitrogen, Carlsbad, CA) and sequenced (GenBank Accession No. FJ943262). BLAST analysis showed 100% identity to ‘Ca. Phytoplasma australiense’ (16SrXII, Stolbur group). A fragment of approximately 850-bp of the Tuf gene was also amplified (2) and sequenced directly (GenBank Accession No. FJ943263). BLAST analysis showed 100% identity to Tuf gene variant IX of ‘Ca. P. australiense’ (2). An additional 14 plants showing similar leaf symptoms and also production of aerial tubers were collected from seven different potato fields from the Auckland and Waikato regions. Total DNA from the leaf midveins, stem, and tubers were separately extracted from each of the plants. The samples were tested for phytoplasma by nested-PCR using primer pair R16F2/R16R2, followed by NGF/NGR (1), and tested for ‘Ca. L. solanacearum’ by nested-PCR as described above. Seven plants tested positive only for phytoplasma, three tested positive for only ‘Ca. L. solanacearum’, and four plants tested positive for both pathogens. The pathogens were most commonly detected in samples extracted from the stem with 9 and 5 of the 14 samples testing positive for phytoplasma and liberibacter, respectively. Six of each of the leaf and tuber samples tested positive for phytoplasma. Liberibacter was detected in one of the leaf samples and in four of the tuber samples. ‘Ca. P. australiense’ has only been reported from New Zealand and Australia. The only other known hosts of ‘Ca. P. australiense’ in New Zealand are strawberry and native plants belonging to the genera Cordyline, Coprosma, and Phormium (2). In Australia, ‘Ca. P. australiense’ is associated with Australian grapevine yellows and Papaya dieback (2). To our knowledge, this is the first report of ‘Ca. P. australiense’ infecting potato as well as the first report of phytoplasma and ‘Ca. L. solanacearum’ mixed infections in potato. References: (1) M. T. Andersen et al. Plant Pathol. 47:188, 1998. (2) M. T. Andersen et al. Phytopathology 96:838, 2006. (3) N. M. Christensen et al. Mol. Plant Microbe Interact. 17:1175, 2004. (4) L. W. Liefting et al. Plant Dis. 93:208, 2009.

Association of ‘Candidatus Liberibacter solanacearum’ with Zebra Chip Disease of Potato Established by Graft and Psyllid Transmission, Electron Microscopy, and PCR

Citation
Secor et al. (2009). Plant Disease 93 (6)
Names
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
A new disease of potatoes, tentatively named zebra chip (ZC) because of the intermittent dark and light symptom pattern in affected tubers which is enhanced by frying, was first found in Mexico in 1994 and in the southwestern United States in 2000. The disease can cause severe economic losses in all market classes of potatoes. The cause of ZC has been elusive, and only recently has been associated with ‘Candidatus Liberibacter’ sp. Field samples of potato plants were collected from several locations in the United States, Mexico, and Guatemala to determine transmission to potato and tomato by grafting of ZC-infected scions and psyllid feeding. The disease was successfully transmitted, through up to three generations, by sequential top- and side-grafting ZC-infection scions to several potato cultivars and to tomato. The disease was also successfully transmitted to potato and tomato plants in greenhouse experiments by potato psyllids collected from potato plants naturally affected with ZC. Transmission electron microscopic observation of ZC-affected tissues revealed the presence of bacteria-like organisms (BLOs) in the phloem of potato and tomato plants inoculated by grafting and psyllid feeding. The BLOs were morphologically similar in appearance to BLOs associated with other plant diseases. Polymerase chain reaction (PCR) amplified 16S rDNA sequences from samples representing different geographic areas, including the United States, Mexico, and Guatemala, were almost identical to the 16S rDNA of ‘Ca. L. solanacearum’ previously reported from solanaceous plants in New Zealand and the United States. Two subclades were identified that differed in two single base-pair substitutions. New specific primers along with an innovative rapid PCR were developed. This test allows the detection of the bacteria in less than 90 min. These data confirm the association of ‘Ca. L. solanacearum’ with potatoes affected by ZC in the United States, Mexico, and Guatemala.

First Report of the Detection of ‘Candidatus Liberibacter’ Species in Zebra Chip Disease-Infected Potato Plants in the United States

Citation
Abad et al. (2009). Plant Disease 93 (1)
Names
Liberibacter
Subjects
Agronomy and Crop Science Plant Science
Abstract
Zebra chip (ZC), an emerging disease causing economic losses to the potato chip industry, has been reported since the early 1990s in Central America and Mexico and in Texas during 2000 (4). ZC was subsequently found in Nebraska, Colorado, New Mexico, Arizona, Nevada, California, and Kansas (3). Severe losses to potato crops were reported in the last few years in Mexico, Guatemala, and Texas (4). Foliar symptoms include purple top, shortened internodes, small leaves, enlargement of the stems, swollen axillary buds, and aerial tubers. Chips made from infected tubers exhibit dark stripes that become markedly more visible upon frying, and hence, are unacceptable to manufacturers. Infected tubers may or may not produce plants when planted. The causal agent of ZC is not known and has been the subject of increased investigation. The pathogen is believed to be transmitted by the potato psyllid, Bactericera cockerelli, and the association of the vector with the disease is well documented (3). Following the report of a potential new liberibacter species in solanaceous crops in New Zealand, we sought to identify this liberibacter species in plants with symptoms of the ZC disease. Six potato plants (cv. Russet Norkota) exhibiting typical ZC symptoms were collected in Olton, TX in June of 2008. DNA was extracted from roots, stems, midribs, and petioles of the infected plants using a FastDNA Spin Kit and the FastPrep Instrument (Qbiogene, Inc., Carlsbad, CA). Negative controls from known healthy potato plants were included. PCR amplification was carried out with ‘Candidatus L. asiaticus’ omp primers (1), 16S rDNA primers specific for ‘Ca. L. asiaticus’, ‘Ca. L. africanus’, and ‘Ca. L. americanus’ (1), and 16S rDNA primers OA2 (GenBank Accession No. EU834130) and OI2c (2). Amplicons from 12 samples were directly sequenced in both orientations (McLab, San Francisco CA). PCR amplifications using species-specific primers for the citrus huanglongbing liberibacter were negative. However, 1.1- and 1.8-kb amplicons were obtained with the OA2/OI2C and omp primers, respectively. The sequences for the rDNA were submitted to NCBI GenBank (Accession Nos. EU884128 and EU884129). BLASTN alignment of the 16S rDNA sequences obtained with primers OA2 and OI2c revealed 99.7% identity with a new species of ‘Ca. Liberibacter’ identified in New Zealand affecting potato (GenBank Accession No. EU849020) and tomato (GenBank Accession No. EU834130), 97% identity with ‘Ca. L. asiaticus’, and 94% with ‘Ca. L. africanus’ and ‘Ca. L. americanus’. The neighbor-joining phylogenetic tree constructed using the 16S rDNA fragments delineated four clusters corresponding to each of the liberibacter species. These results confirm that ‘Ca. Liberibacter’ spp. DNA sequences were obtained from potatoes showing ZC-like symptoms, suggesting that a new species of this genus may be involved in causing ZC disease. To our knowledge, this is the first report of the detection of ‘Ca. Liberibacter’ spp. in potatoes showing ZC disease in the United States. References: (1) C. Bastianel et al. Appl. Environ. Microbiol. 71:6473, 2005. (2) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (3) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007. (4) G. A. Secor and V. V. Rivera-Varas. Rev. Latinoamericana de la Papa (suppl.)1:1, 2004.

A New ‘Candidatus Liberibacter’ Species in Solanum betaceum (Tamarillo) and Physalis peruviana (Cape Gooseberry) in New Zealand

Citation
Liefting et al. (2008). Plant Disease 92 (11)
Names
Liberibacter
Subjects
Agronomy and Crop Science Plant Science
Abstract
A new ‘Candidatus Liberibacter’ species was recently identified in tomato, capsicum, and potato in New Zealand. The tomato/potato psyllid, Bactericera cockerelli, is thought to be the vector of this species of liberibacter. During studies to determine additional host plants of the pathogen, leaves of Solanum betaceum (tamarillo, also known as tree tomato) and leaves and stems of Physalis peruviana (cape gooseberry) were collected from a home garden in South Auckland, New Zealand in July of 2008. These plants were not showing any obvious disease symptoms. They were located close to a commercial glasshouse site containing known liberibacter-infected tomatoes, and many psyllids were observed on the tamarillo tree over the summer and until late autumn. Total DNA was extracted from four tamarillo and two cape gooseberry samples with a DNeasy Plant Mini Kit (Qiagen, Valencia, CA). Samples from tamarillo that were used for the extraction were taken from the midveins of old and young leaves and from young petioles. For cape gooseberry, samples were from the leaf midveins and the stems. The samples were tested by PCR using primers OA2 (GenBank Accession No. EU834130) and OI2c (1). These primers amplify a 1,160-bp fragment of the 16S rRNA gene of the new liberibacter species. Amplicons of the expected size were obtained from all four tamarillo samples, with no amplification from negative control tamarillo plants grown from seed in an insect-proof glasshouse. Almost the entire length of the 16S rRNA gene was amplified using primer pairs fD2 (3)/OI2c and OA2/rP1 (3), and the 16S-23S rRNA intergenic spacer was amplified with primer pair OI2/23S1 (2). These amplicons, along with that from the OA2/OI2c primer pair, were directly sequenced, and overlapping fragments were assembled using the SeqMan software of the LaserGene package (DNASTAR, Inc., Madison, WI) (GenBank Accession No. EU935004). A 650-bp fragment of the β operon was also amplified and sequenced directly (GenBank Accession No. EU935005). BLAST analysis showed 100% nt identity to the liberibacter of tomato (GenBank Accession Nos. EU834130 and EU834131) and potato (GenBank Accession Nos. EU849020 and EU919514). The two cape gooseberry samples produced amplicons of the expected size with the 16S rRNA and β operon primers and the origin of the fragments were confirmed by direct sequencing with BLAST analysis showing 100% nt identity to isolates from tomato, potato, and tamarillo. To determine the distribution of disease, 53 samples of 10 leaves each (representing two leaves from five plants) were collected randomly from a commercial tamarillo crop in South Auckland. Small sections of the midveins were removed from each of the 10 leaves, bulked, and DNA was extracted as described above. The samples were tested by PCR using primer pair OA2/OI2c. Amplicons of the expected size were obtained from 2 of the 53 samples. To our knowledge, this is the first report of a liberibacter in tamarillo and cape gooseberry. It is unknown if the liberibacter induces symptoms in these species or if they act as symptomless reservoirs of the pathogen. The infected plants will be observed for symptom development over the course of a growing season. References: (1) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (2) S. Jagoueix et al. Int. J. Syst. Bacteriol. 47:224, 1997. (3) W. G. Weisburg et al. J. Bacteriol. 173:697, 1991.

A New ‘Candidatus Liberibacter’ Species in Solanum tuberosum in New Zealand

Citation
Liefting et al. (2008). Plant Disease 92 (10)
Names
Liberibacter
Subjects
Agronomy and Crop Science Plant Science
Abstract
Symptoms resembling “zebra chip” disease (3) were observed in potato (Solanum tuberosum) tubers harvested from a breeding trial in South Auckland, New Zealand in May 2008. The tubers had necrotic flecking and streaking that became marked when the potatoes were fried. Affected plants generally senesced early, at the beginning of April. The mean yield was approximately 60% less than expected and harvested tubers had less dry matter (13%) than normal (19%). Large numbers of the psyllid Bactericera cockerelli were observed on the crop during the summer. Total DNA was extracted from the vascular tissue of five symptomatic tubers and seven volunteers collected from the affected field with a DNeasy Plant Mini Kit (Qiagen, Valencia, CA). Samples were tested by PCR using primers OA2 (GenBank Accession No. EU834130) and OI2c (2). These primers amplify a 1,160-bp fragment of the 16S rRNA sequence of a ‘Candidatus Liberibacter’ species identified in tomato and capsicum in New Zealand. No fragment was amplified from healthy plants, but amplicons of the expected size were obtained from all symptomatic tubers and one plant. A 650-bp fragment of the β operon was also amplified from symptomatic tubers. The amplicons were directly sequenced (GenBank Accession Nos. EU849020 and EU919514). BLAST analysis showed 100% identity to the tomato/capsicum liberibacter (GenBank Accession Nos. EU834130 and EU834131). From a commercial potato field adjoining the breeding trial, groundkeeper tubers were collected and separated into those that were asymptomatic and those that exhibited a range of symptoms. Total DNA was extracted and tested by PCR using the OA2/OI2c primers. In the first category, 6 of 10 tubers tested positive, whereas the 10 tubers in the second category tested negative. Two phytoplasmas seem to be involved in the “zebra chip” disease complex (4) but were not detected in the samples in this study. To our knowledge, this is the first report of a liberibacter associated with disease in potato. From transmission electron microscope observations, previous researchers have hypothesized that a bacterium-like organism may cause “zebra chip” (1) and B. cockerelli is associated with the disease (3). “Zebra chip” was first reported in Mexico in 1994, since then it has caused significant economic damage in Guatemala, Mexico, and the southwestern United States. The economic impact of the disease in New Zealand is yet to be determined. References: (1) S. H. De Boer et al. Page 30 in: New and Old Pathogens of Potato in Changing Climate. A. Hannukkala and M. Segerstedt, eds. Online publication. Agrifood Research Working Paper 142, 2007. (2) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (3) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007. (4) G. A. Secor et al. Plant Dis. 90:377, 2006.