Peura, Sari

Publications (2)

16S rRNA gene sequences of Candidatus Methylumidiphilus (Methylococcales), a putative methanotrophic genus in lakes and ponds

Rissanen et al. [posted content, 2021]
Names (2)
Ca. Methylumidiphilus alinenensis Ca. Methylumidiphilus
AbstractA putative novel methanotrophic genus, Candidatus Methylumidiphilus (Methylococcales), was recently shown to be ubiquitous and one of the most abundant methanotrophic genera in water columns of oxygen-stratified lakes and ponds of boreal and subarctic area. However, it has probably escaped detection in many previous studies using 16S rRNA gene amplicon sequencing due to insufficient database coverage, which is because Ca. Methylumidiphilus lacks cultured representatives and previously analysed metagenome assembled genomes (MAGs) affiliated with it do not contain 16S rRNA genes. Therefore, we screened MAGs affiliated with the genus for their 16S rRNA gene sequences in a recently published lake and pond MAG dataset. Among 66 MAGs classified as Ca. Methylumidiphilus (with completeness over 40% and contamination less than 5%) originating from lakes in Finland, Sweden and Switzerland as well as from ponds in Canada, we could find 5 MAGs each containing one 1532 bp long sequence spanning the V1-V9 regions of the 16S rRNA gene. After removal of sequence redundancy, this resulted in two unique 16S rRNA gene sequences. These sequences represented two different putative species, i.e. Ca. Methylumidiphilus alinenensis (Genbank accession: OK236221) as well as another so far unnamed species of Ca. Methylumidiphilus (Genbank accession: OK236220). We suggest that including these two sequences in reference databases will enhance 16S rRNA gene - based detection of members of this genus from environmental samples.

Candidatus Methylumidiphilus Drives Peaks in Methanotrophic Relative Abundance in Stratified Lakes and Ponds Across Northern Landscapes

Martin et al. (2021). Frontiers in Microbiology 12
Names (3)
Ca. Methylumidiphilus Methylomirabilis Ca. Methanoperedenaceae
Microbiology Microbiology (medical)
Boreal lakes and ponds produce two-thirds of the total natural methane emissions above the latitude of 50° North. These lake emissions are regulated by methanotrophs which can oxidize up to 99% of the methane produced in the sediments and the water column. Despite their importance, the diversity and distribution of the methanotrophs in lakes are still poorly understood. Here, we used shotgun metagenomic data to explore the diversity and distribution of methanotrophs in 40 oxygen-stratified water bodies in boreal and subarctic areas in Europe and North America. In our data, gammaproteobacterial methanotrophs (order Methylococcales) generally dominated the methanotrophic communities throughout the water columns. A recently discovered lineage of Methylococcales, Candidatus Methylumidiphilus, was present in all the studied water bodies and dominated the methanotrophic community in lakes with a high relative abundance of methanotrophs. Alphaproteobacterial methanotrophs were the second most abundant group of methanotrophs. In the top layer of the lakes, characterized by low CH4 concentration, their abundance could surpass that of the gammaproteobacterial methanotrophs. These results support the theory that the alphaproteobacterial methanotrophs have a high affinity for CH4 and can be considered stress-tolerant strategists. In contrast, the gammaproteobacterial methanotrophs are competitive strategists. In addition, relative abundances of anaerobic methanotrophs, Candidatus Methanoperedenaceae and Candidatus Methylomirabilis, were strongly correlated, suggesting possible co-metabolism. Our data also suggest that these anaerobic methanotrophs could be active even in the oxic layers. In non-metric multidimensional scaling, alpha- and gammaproteobacterial methanotrophs formed separate clusters based on their abundances in the samples, except for the gammaproteobacterial Candidatus Methylumidiphilus, which was separated from these two clusters. This may reflect similarities in the niche and environmental requirements of the different genera within alpha- and gammaproteobacterial methanotrophs. Our study confirms the importance of O2 and CH4 in shaping the methanotrophic communities and suggests that one variable cannot explain the diversity and distribution of the methanotrophs across lakes. Instead, we suggest that the diversity and distribution of freshwater methanotrophs are regulated by lake-specific factors.