Folimonova, Svetlana Y.


Publications (7)

Update and validation of the 16S rDNA qPCR assay for the detection of three ‘Candidatus’ Liberibacter species following current MIQE guidelines and workflow

Citation
Osman et al. (2022). PhytoFrontiers™
Names
Ca. Liberibacter asiaticus Liberibacter
Subjects
General Medicine
Abstract
An updated real-time multiplex quantitative polymerase chain reaction (qPCR) assay was designed and validated for the simultaneous detection of three ‘Candidatus Liberibacter species’ (CLsp), Ca. Liberibacter asiaticus (CLas), africanus (CLaf) and americanus (CLam), associated with the Huanglongbing (HLB) disease of citrus. The multiplex assay was designed based on the previously published qPCR assay by Li et al., 2006, taking into consideration all available CLsp 16S rRNA gene sequences in the GenBank and the MIQE guidelines and workflow for qPCR optimization, which became available after 2006. When using the updated multiplex CLsp qPCR assay compared to singleplex qPCR, no significant increase in Cq values was detected. The specificity and sensitivity of the updated qPCR assay was optimal and measuring the intra and inter assay variations confirmed the reproducibility and repeatability of the assay. The assay was also successfully used with a large number of diverse samples, at independent laboratories in four countries, thus demonstrating its transferability, applicability, practicability, and robustness as different qPCR reaction conditions or instruments had a minor effect on Cq values. This updated multiplex CLsp qPCR assay can be used in a variety of citrus surveys, germplasm, or nursery stock programs that require different pathogen detection tools for their successful operation. Keywords: Citrus greening disease, COX internal DNA control; validation; citrus germplasm; budwood; citrus nursery, citrus survey, regulatory diagnostics, Citrus Clonal Protection Program (CCPP), National Clean Plant Network (NCPN)

Assessment of unconventional antimicrobial compounds for the control of ‘Candidatus Liberibacter asiaticus’, the causative agent of citrus greening disease

Citation
Gardner et al. (2020). Scientific Reports 10 (1)
Names
Ca. Liberibacter asiaticus
Subjects
Multidisciplinary
Abstract
AbstractIn this study, newly identified small molecules were examined for efficacy against ‘Candidatus Liberibacter asiaticus’ in commercial groves of sweet orange (Citrus sinensis) and white grapefruit (Citrus paradisi) trees. We used benzbromarone and/or tolfenamic acid delivered by trunk injection. We evaluated safety and efficacy parameters by performing RNAseq of the citrus host responses, 16S rRNA gene sequencing to characterize citrus-associated microbial communities during treatment, and qRT-PCR as an indirect determination of ‘Ca. L. asiaticus’ viability. Analyses of the C. sinensis transcriptome indicated that each treatment consistently induced genes associated with normal metabolism and growth, without compromising tree viability or negatively affecting the indigenous citrus-associated microbiota. It was found that treatment-associated reduction in ‘Ca. L. asiaticus’ was positively correlated with the proliferation of several core taxa related with citrus health. No symptoms of phytotoxicity were observed in any of the treated trees. Trials were also performed in commercial groves to examine the effect of each treatment on fruit productivity, juice quality and efficacy against ‘Ca. L. asiaticus’. Increased fruit production (15%) was observed in C. paradisi following twelve months of treatment with benzbromarone and tolfenamic acid. These results were positively correlated with decreased ‘Ca. L. asiaticus’ transcriptional activity in root samples.

Visualization of ‘Candidatus Liberibacter asiaticus’ Cells in the Vascular Bundle of Citrus Seed Coats with Fluorescence In Situ Hybridization and Transmission Electron Microscopy

Citation
Hilf et al. (2013). Phytopathology® 103 (6)
Names
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter asiaticus’ is the bacterium implicated as a causal agent of the economically damaging disease of citrus called huanglongbing (HLB). Vertical transmission of the organism through seed to the seedling has not been demonstrated. Previous studies using real-time polymerase chain reaction assays indicated abundant bacterial 16S rRNA sequences in seed coats of citrus seed but the presence of intact bacterial cells was not demonstrated. We used microscopy to verify that intact bacterial cells were present in citrus seed coats. Bacterial cells with the morphology and physical dimensions appropriate for ‘Ca. L. asiaticus’ were seen in phloem sieve elements in the vascular bundle of grapefruit seed coats using transmission electron microscopy (TEM). Fluorescence in situ hybridization (FISH) analyses utilizing probes complementary to the ‘Ca. L. asiaticus’ 16S rRNA gene revealed bacterial cells in the vascular tissue of intact seed coats of grapefruit and pummelo and in fragmented vascular bundles excised from grapefruit seed coats. The physical measurements and the morphology of individual bacterial cells were consistent with those ascribed in the literature to ‘Ca. L. asiaticus’. No bacterial cells were observed in preparations of seed from fruit from noninfected trees. A small library of clones amplified from seed coats from a noninfected tree using degenerate primers targeting prokaryote 16S rRNA gene sequences contained no ‘Ca. L. asiaticus’ sequences, whereas 95% of the sequences in a similar library from DNA from seed coats from an infected tree were identified as ‘Ca. L. asiaticus’, providing molecular genetic corroboration that the bacterial cells observed by TEM and FISH in seed coats from infected trees were ‘Ca. L. asiaticus’.