Nakai, Ryosuke


Publications (3)

Microscopic and metatranscriptomic analyses revealed unique cross-domain symbiosis betweenCandidatusPatescibacteria/candidate phyla radiation (CPR) and methanogenic archaea in anaerobic ecosystems

Citation
Kuroda et al. [posted content, 2023]
Names (3)
Ca. Yanofskybacteria Ca. Patescibacteria Ca. Paceibacteria
Abstract
AbstractTo verify the parasitic lifestyle ofCandidatusPatescibacteria in the enrichment cultures derived from a methanogenic bioreactor, we applied multifaceted approaches combining cultivation, microscopy, metatranscriptomic, and protein structure prediction analyses. Cultivation experiments with the addition of exogenous methanogenic archaea with acetate, amino acids, and nucleoside monophosphates and 16S rRNA gene sequencing confirmed the increase in the relative abundance ofCa. Patescibacteria and methanogens. The predominantCa. Patescibacteria wereCa. Yanofskybacteria and 32-520 lineages (to which belongs to classCa. Paceibacteria) and positive linear relationships (r2≥ 0.70) between the relative abundance ofCa. Yanofskybacteria andMethanothrix, suggesting that the tendency of the growth rate is similar to that of the host. By fluorescencein situhybridization (FISH) observations, the FISH signals ofMethanothrixandMethanospirillumcells withCa. Yanofskybacteria and with 32-520 lineages, respectively, were significantly lower than those of the methanogens withoutCa. Patescibacteria, suggesting their parasitic interaction. The TEM and SEM observations also support parasitism in that the cell walls and plugs of these methanogens associated with submicron cells were often deformed. In particular, someMethanothrix-like filamentous cells were dented where the submicron cells were attached. Metatranscriptomic and protein structure prediction analyses identified highly expressed secreted genes from the genomes ofCa. Yanofskybacteria and 32-520, and these genes contain adhesion-related domains to the host cells. Considering the results through the combination of microscopic observations, gene expression, and computational protein modeling, we propose that the interactions betweenCa. Yanofskybacteria and 32-520 belonging to classCa. Paceibacteria and methanogenic archaea are parasitism.

Symbiosis between Candidatus Patescibacteria and Archaea Discovered in Wastewater-Treating Bioreactors

Citation
Kuroda et al. (2022). mBio 13 (5)
Names (1)
Ca. Patescibacteria
Subjects
Microbiology Virology
Abstract
One highly diverse phylogenetic group of Bacteria, Ca . Patescibacteria, remains poorly understood, but, from the few cultured representatives and metagenomic investigations, they are thought to live symbiotically or parasitically with other bacteria or even with eukarya.

Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities

Citation
Waite et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names (11)
“Adiutricales” Myxococcota Ca. Adiutrix “Adiutricaceae” “Magnetomoraceae” Ca. Magnetomorum Ca. Desulfobacterota “Desulfofervidia” Ca. Desulfofervidus Ca. Desulfofervidaceae “Desulfofervidales”
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
The class Deltaproteobacteria comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum Proteobacteria , it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the class Deltaproteobacteria encompassing Bdellovibrio-like predators was recently reclassified into a separate proteobacterial class, the Oligoflexia . Here we systematically explore the phylogeny of taxa currently assigned to these classes using 120 conserved single-copy marker genes as well as rRNA genes. The overwhelming majority of markers reject the inclusion of the classes Deltaproteobacteria and Oligoflexia in the phylum Proteobacteria . Instead, the great majority of currently recognized members of the class Deltaproteobacteria are better classified into four novel phylum-level lineages. We propose the names Desulfobacterota phyl. nov. and Myxococcota phyl. nov. for two of these phyla, based on the oldest validly published names in each lineage, and retain the placeholder name SAR324 for the third phylum pending formal description of type material. Members of the class Oligoflexia represent a separate phylum for which we propose the name Bdellovibrionota phyl. nov. based on priority in the literature and general recognition of the genus Bdellovibrio. Desulfobacterota phyl. nov. includes the taxa previously classified in the phylum Thermodesulfobacteria , and these reclassifications imply that the ability of sulphate reduction was vertically inherited in the Thermodesulfobacteria rather than laterally acquired as previously inferred. Our analysis also indicates the independent acquisition of predatory behaviour in the phyla Myxococcota and Bdellovibrionota, which is consistent with their distinct modes of action. This work represents a stable reclassification of one of the most taxonomically challenging areas of the bacterial tree and provides a robust framework for future ecological and systematic studies.