Zhao, Rui


Publications
5

Candidatus Subterrananammoxibiaceae,” a New Anammox Bacterial Family in Globally Distributed Marine and Terrestrial Subsurfaces

Citation
Zhao et al. (2023). Applied and Environmental Microbiology 89 (8)
Names
Ca. Subterrananammoxibiaceae
Abstract
Microorganisms called anammox bacteria are efficient in removing bioavailable nitrogen from many natural and human-made environments. They exist in almost every anoxic habitat where both ammonium and nitrate/nitrite are present.

Occurrence, Diversity, and Genomes of “ Candidatus Patescibacteria” along the Early Diagenesis of Marine Sediments

Citation
Zhao et al. (2022). Applied and Environmental Microbiology 88 (24)
Names
Ca. Patescibacteria
Abstract
Ultrasmall-celled “ Ca. Patescibacteria” have been estimated to account for one-quarter of the total microbial diversity on Earth, the parasitic lifestyle of which may exert a profound control on the overall microbial population size of the local ecosystems. However, their diversity and metabolic functions in marine sediments, one of the largest yet understudied ecosystems on Earth, remain virtually uncharacterized.

Introducing Candidatus Bathyanammoxibiaceae, a family of bacteria with the anammox potential present in both marine and terrestrial environments

Citation
Zhao et al. (2022). ISME Communications 2 (1)
Names
Ca. Bathyanammoxibiaceae Ca. Brocadiales
Abstract
AbstractAnaerobic ammonium oxidation (Anammox) bacteria are a group of extraordinary bacteria exerting a major impact on the global nitrogen cycle. Their phylogenetic breadth and diversity, however, are not well constrained. Here we describe a new, deep-branching family in the order of Candidatus Brocadiales, Candidatus Bathyanammoxibiaceae, members of which have genes encoding the key enzymes of the anammox metabolism. In marine sediment cores from the Arctic Mid-Ocean Ridge (AMOR), the presenc

“ Sifarchaeota ,” a Novel Asgard Phylum from Costa Rican Sediment Capable of Polysaccharide Degradation and Anaerobic Methylotrophy

Citation
Farag et al. (2021). Applied and Environmental Microbiology 87 (9)
Names
Ca. Sifarchaeum Ca. Sifarchaeum marinoarchaea Ca. Sifarchaeum subterraneus Ca. Sifarchaeota
Abstract
The exploration of deep marine sediments has unearthed many new lineages of microbes. The finding of this novel phylum of Asgard archaea is important, since understanding the diversity and evolution of Asgard archaea may inform also about the evolution of eukaryotic cells. The comparison of metabolic potentials of the Asgard archaea can help inform about selective pressures the lineages have faced during evolution.

“Sifarchaeota” a novel Asgard phylum capable of polysaccharide degradation and anaerobic methylotrophy

Citation
Farag et al. (2020).
Names
Ca. Sifarchaeum Ca. Sifarchaeum marinoarchaea Ca. Sifarchaeum subterraneus Ca. Sifarchaeota
Abstract
AbstractThe Asgard superphylum is a deeply branching monophyletic group of Archaea, recently described as some of the closest relatives of the eukaryotic ancestor. The wide application of genomic analyses from metagenome sequencing has established six distinct phyla, whose genomes encode for diverse metabolic capacities and play important biogeochemical and ecological roles in marine sediments. Here, we describe two metagenome-assembled genomes (MAGs) recovered from deep marine sediments off Cos