Rashed, A.


Publications (5)

Effects of Potato-Psyllid-Vectored ‘Candidatus Liberibacter solanacearum’ Infection on Potato Leaf and Stem Physiology

Citation
Wallis et al. (2015). Phytopathology® 105 (2)
Names (1)
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
The bacterium ‘Candidatus Liberibacter solanacearum’ is associated with zebra chip disease (ZC), a threat to potato production in North America and New Zealand. It is vectored by potato psyllids. Previous studies observed that ‘Ca. L. solanacearum’ infection causes potato tubers to undergo ZC-symptom-associated shifts in physiology, such as increased levels of amino acids, sugars, and phenolics. However, little is known about how ‘Ca. L. solanacearum’ infections caused by psyllid vector feeding may affect metabolism in potato foliage and stems. This study compared metabolism in potato plants fed upon by ‘Ca. L. solanacearum’-positive psyllids with potato plants not exposed to psyllids. Foliar levels of asparagine, aspartic acid, glutamine, fructose, glucose, sucrose, a ferulic acid derivative, and quinic acid were lower in ‘Ca. L. solanacearum’-inoculated than noninfected plants. However, foliar levels of proline, serine, four phenolic compounds, and most terpenoids were greater in ‘Ca. L. solanacearum’-inoculated than noninfected plants. Upper stem levels of asparagine and aspartic acid, upper and lower stem levels of ellagitannins and most monoterpenoids, and lower stem level of sesquiterpenoids were greater in ‘Ca. L. solanacearum’-inoculated than noninfected plants. These results suggest that many defense-related terpenoid compounds might increase in plants which had psyllids inoculate ‘Ca. L. solanacearum’. This could impact progression and spread of ZC.

Similarities and Differences in Physiological Responses to ‘Candidatus Liberibacter solanacearum’ Infection Among Different Potato Cultivars

Citation
Wallis et al. (2014). Phytopathology® 104 (2)
Names (1)
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
Zebra chip disease (ZC), putatively caused by the fastidious bacterium ‘Candidatus Liberibacter solanacearum’, is a threat to potato growers worldwide. However, little is known about biochemical shifts in different potato genotypes in response to ‘Ca. L. solanacearum’ infection. To address this, ‘Red La Soda’, ‘Russet Norkotah’, and ‘FL 1867’ potato were infected with ‘Ca. L. solanacearum’ 4, 3, 2, and 1 weeks before harvest to observe variability in cultivar responses to ‘Ca. L. solanacearum’ infection. ZC symptoms, ‘Ca. L. solanacearum’ titers, and tuber biochemistry were assessed. Red La Soda tubers exhibited greater symptoms when infected for 4 weeks than Russet Norkotah or FL 1867 tubers. ‘Ca. L. solanacearum’ titers did not vary among cultivars. Tuber levels of amino acids, carbohydrates, and phenolics varied among cultivars but no consistent trends were observed. Individual amino acids and phenolics were greater in FL 1867 than Red La Soda, whereas others were greater in Red La Soda or Russet Norkotah than FL 1867. Most amino acids, carbohydrates, and phenolics were positively associated with infection duration and symptoms regardless of cultivar. Associations between most of the evaluated compounds and ‘Ca. L. solanacearum’ titer were positive in Red La Soda. However, no associations between ‘Ca. L. solanacearum’ quantity and compounds were observed in FL 1867 and Russet Norkotah.

Zebra Chip Disease and Potato Biochemistry: Tuber Physiological Changes in Response to ‘Candidatus Liberibacter solanacearum’ Infection Over Time

Citation
Rashed et al. (2013). Phytopathology® 103 (5)
Names (1)
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
Zebra chip disease, putatively caused by the bacterium ‘Candidatus Liberibacter solanacearum’, is of increasing concern to potato production in Mexico, the United States, and New Zealand. However, little is known about the etiology of this disease and changes that occur within host tubers that result in its symptoms. Previous studies found that increased levels of phenolics, amino acids, defense proteins, and carbohydrates in ‘Ca. L. solanacearum’-infected tubers are associated with symptoms of zebra chip. This study was conducted to quantify variations in levels of these biochemical components in relation to the time of infestation, symptom severity, and ‘Ca. L. solanacearum’ titer. Levels of phenolics, peroxidases, polyphenol oxidases, and reducing sugars (glucose and, to some extent, fructose) changed during infection, with higher levels occurring in tubers infected at least 5 weeks before harvest than in those infected only a week before harvest and those of controls. Compared with the apical tuber ends, greater levels of phenolics, peroxidases, and sucrose occurred at the basal (stolon attachment) end of infected tubers. With the exception of phenolics, concentrations of the evaluated compounds were not associated with ‘Ca. L. solanacearum’ titer. However, there were significant associations between biochemical responses and symptom severity. The lack of a linear correlation between most plant biochemical responses and ‘Ca. L. solanacearum’ titer suggests that shifts in metabolic profiles are independent of variations in ‘Ca. L. solanacearum’ levels.

Transmission Efficiency of ‘Candidatus Liberibacter solanacearum’ and Potato Zebra Chip Disease Progress in Relation to Pathogen Titer, Vector Numbers, and Feeding Sites

Citation
Rashed et al. (2012). Phytopathology® 102 (11)
Names (1)
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
With diseases caused by vector-borne plant pathogens, acquisition and inoculation are two primary stages of the transmission, which can determine vector efficiency in spreading the pathogen. The present study was initiated to quantify acquisition and inoculation successes of ‘Candidatus Liberibacter solanacearum’, the etiological agent of zebra chip disease of potato, by its psyllid vector, Bactericera cockerelli (Hemiptera: Triozidae). Acquisition success was evaluated in relation to feeding site on the host plant as well as the acquisition access period. Inoculation success was evaluated in relation to vector number (1 and 4) on the plants. Acquisition success was influenced by the feeding site on the plant. The highest acquisition success occurred when insects had access to the whole plant. The results of the inoculation study indicated that the rate of successfully inoculated plants increased with the vector number. Plants inoculated with multiple psyllids had higher bacterial titer at the point of inoculation. Although disease incubation period was significantly shorter in plants inoculated with multiple psyllids, this effect was heterogeneous across experimental blocks, and was independent of pathogen quantity detected in the leaflets 3 days postinoculation. Disease progress was not affected by bacterial quantity injected or psyllid numbers.