Fang, Fang


Publications (6)

Pathogenicity and Transcriptomic Analyses of Two “ Candidatus Liberibacter asiaticus” Strains Harboring Different Types of Phages

Citation
Zheng et al. (2023). Microbiology Spectrum 11 (3)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Cell Biology Ecology General Immunology and Microbiology Genetics Infectious Diseases Microbiology (medical) Physiology
Abstract
Citrus Huanglongbing (HLB), also called citrus greening disease, is a highly destructive disease threatening citrus production worldwide. “ Candidatus Liberibacter asiaticus” is one of the most common putative causal agents of HLB. Phages of “ Ca . Liberibacter asiaticus”

Comparative transcriptome profiling of susceptible and tolerant citrus species at early and late stage of infection by “Candidatus Liberibacter asiaticus”

Citation
Gao et al. (2023). Frontiers in Plant Science 14
Names (1)
Ca. Liberibacter asiaticus
Subjects
Plant Science
Abstract
Citrus Huanglongbing (HLB), caused by “Candidatus Liberibacter asiaticus” (CLas), is the most destructive disease threatening global citrus industry. Most commercial cultivars were susceptible to HLB, although some showed tolerant to HLB phenotypically. Identifying tolerant citrus genotypes and understanding the mechanism correlated with tolerance to HLB is essential for breeding citrus variety tolerance/resistance to HLB. In this study, the graft assay with CLas-infected bud were performed in four citrus genotypes, including Citrus reticulata Blanco, C. sinensis, C. limon, and C. maxima. HLB tolerance was observed in C. limon and C. maxima, while C. Blanco and C. sinensis were susceptible to HLB. The time-course transcriptomic analysis revealed a significant variation in differentially expressed genes (DEGs) related to HLB between susceptible and tolerant cultivar group at early and late infection stage. Functional analysis of DEGs indicated that the activation of genes involved in SA-mediated defense response, PTI, cell wall associated immunity, endochitinase, phenylpropanoid and alpha-linolenic/linoleic lipid metabolism played an important in the tolerance of C. limon and C. maxima to HLB at early infection stage. In addition, the overactive plant defense combined with the stronger antibacterial activity (antibacterial secondary and lipid metabolism) and the suppression of pectinesterase were contributed to the long-term tolerance to HLB in C. limon and C. maxima at late infection stage. Particularly, the activation of ROS scavenging genes (catalases and ascorbate peroxidases) could help to reduce HLB symptoms in tolerant cultivars. In contrast, the overexpression of genes involved in oxidative burst and ethylene metabolism, as well as the late inducing of defense related genes could lead to the early HLB symptom development in susceptible cultivars at early infection stage. The weak defense response and antibacterial secondary metabolism, and the induce of pectinesterase were responsible for sensitivity to HLB in C. reticulata Blanco and C. sinensis at late infection stage. This study provided new insights into the tolerance/sensitivity mechanism against HLB and valuable guidance for breeding of HLB-tolerant/resistant cultivars.

Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in “Candidatus Liberibacter asiaticus”

Citation
Wang et al. (2022). International Journal of Molecular Sciences 23 (17)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Catalysis Computer Science Applications General Medicine Inorganic Chemistry Molecular Biology Organic Chemistry Physical and Theoretical Chemistry Spectroscopy
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is the causal agent of citrus Huanglongbing (HLB, also called citrus greening disease), a highly destructive disease threatening citrus production worldwide. A novel Microviridae phage (named CLasMV1) has been found to infect CLas, providing a potential therapeutic strategy for CLas/HLB control. However, little is known about the CLasMV1 biology. In this study, we analyzed the population dynamics of CLasMV1 between the insect vector of CLas, the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) and the holoparasitic dodder plant (Cuscuta campestris Yunck.); both acquired CLasMV1-infected CLas from an HLB citrus. All CLas-positive dodder samples were CLasMV1-positive, whereas only 32% of CLas-positive ACP samples were identified as CLasMV1-positive. Quantitative analyses showed a similar distribution pattern of CLasMV1 phage and CLas among eight citrus cultivars by presenting at highest abundance in the fruit pith and/or the center axis of the fruit. Transcriptome analyses revealed the possible lytic activity of CLasMV1 on CLas in fruit pith as evidenced by high-level expressions of CLasMV1 genes, and CLas genes related to cell wall biogenesis and remodeling to maintain the CLas cell envelope integrity. The up-regulation of CLas genes were involved in restriction–modification system that could involve possible phage resistance for CLas during CLasMV1 infection. In addition, the regulation of CLas genes involved in cell surface components and Sec pathway by CLasMV1 phage could be beneficial for phage infection. This study expanded our knowledge of CLasMV1 phage that will benefit further CLas phage research and HLB control.

A Novel Microviridae Phage (CLasMV1) From “Candidatus Liberibacter asiaticus”

Citation
Zhang et al. (2021). Frontiers in Microbiology 12
Names (1)
Ca. Liberibacter asiaticus
Subjects
Microbiology Microbiology (medical)
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is an unculturable phloem-limited α-proteobacterium associated with citrus Huanglongbing (HLB; yellow shoot disease). HLB is currently threatening citrus production worldwide. Understanding the CLas biology is critical for HLB management. In this study, a novel single-stranded DNA (ssDNA) phage, CLasMV1, was identified in a CLas strain GDHZ11 from Guangdong Province of China through a metagenomic analysis. The CLasMV1 phage had a circular genome of 8,869 bp with eight open reading frames (ORFs). While six ORFs remain uncharacterized, ORF6 encoded a replication initiation protein (RIP), and ORF8 encoded a major capsid protein (MCP). Based on BLASTp search against GenBank database, amino acid sequences of both MCP and RIP shared similarities (coverage > 50% and identity > 25%) to those of phages in Microviridae, an ssDNA phage family. Phylogenetic analysis revealed that CLasMV1 MCP and RIP sequences were clustered with genes from CLas and “Ca. L. solanacearum” (CLso) genomes and formed a unique phylogenetic lineage, designated as a new subfamily Libervirinae, distinct to other members in Microviridae family. No complete integration form but partial sequence (∼1.9 kb) of CLasMV1 was found in the chromosome of strain GDHZ11. Read-mapping analyses on additional 15 HiSeq data sets of CLas strains showed that eight strains harbored complete CLasMV1 sequence with variations in single-nucleotide polymorphisms (SNPs) and small sequence insertions/deletions (In/Dels). PCR tests using CLasMV1-specific primer sets detected CLasMV1 in 577 out of 1,006 CLas strains (57%) from southern China. This is the first report of Microviridae phage associated with CLas, which expands our understanding of phage diversity in CLas and facilitates current research in HLB.

A Significantly High Abundance of “Candidatus Liberibacter asiaticus” in Citrus Fruit Pith: in planta Transcriptome and Anatomical Analyses

Citation
Fang et al. (2021). Frontiers in Microbiology 12
Names (1)
Ca. Liberibacter asiaticus
Subjects
Microbiology Microbiology (medical)
Abstract
Huanglongbing, a highly destructive disease of citrus, is associated with the non-culturable phloem-limited α-proteobacterium “Candidatus Liberibacter asiaticus” (CLas). The distribution patterns of CLas in infected plant are variable and not consistent, which make the CLas detection and characterization more challenging. Here, we performed a systemic analysis of CLas distribution in citrus branches and fruits of 14 cultivars. A significantly high concentration of CLas was detected in fruit pith (dorsal vascular bundle) of 14 citrus cultivars collected at fruit maturity season. A 2-year monitoring assay of CLas population in citrus branches of “Shatangju” mandarin (Citrus reticulata Blanco “Shatangju”) revealed that CLas population already exhibited a high level even before the appearance of visual symptoms in the fruit rind. Quantitative analyses of CLas in serial 1.5-cm segments of fruit piths showed the CLas was unevenly distributed within fruit pith and tended to colonize in the middle or distal (stylar end) regions of pith. The use of CLas-abundant fruit pith for dual RNA-seq generated higher-resolution CLas transcriptome data compared with the leaf samples. CLas genes involved in transport system, flagellar assembly, lipopolysaccharide biosynthesis, virulence, stress response, and cell surface structure, as well as host genes involved in biosynthesis of antimicrobial-associated secondary metabolites, was up-regulated in leaf midribs compared with fruit pith. In addition, CLas infection caused the severe collapse in phloem and callose deposition in the plasmodesmata of fruit pith. The ability of fruit pith to support multiplication of CLas to high levels makes it an ideal host tissue for morphological studies and in planta transcriptome analyses of CLas–host interactions.