Wei, Tao


Publications
3

A Glycolipid Glycosyltransferase with Broad Substrate Specificity from the Marine Bacterium “ Candidatus Pelagibacter sp.” Strain HTCC7211

Citation
Wei et al. (2021). Applied and Environmental Microbiology 87 (14)
Names
Ca. Pelagibacter
Abstract
The bilayer formed by membrane lipids serves as the containment unit for living microbial cells. In the marine environment, it has been firmly established that phytoplankton and heterotrophic bacteria can substitute phospholipids with nonphosphorus sugar-containing glycoglycerolipids in response to phosphorus limitation.

Characterization of a glycolipid glycosyltransferase with broad substrate specificity from the marine bacterium Candidatus Pelagibacter sp. HTCC7211

Citation
Wei et al. (2021).
Names
Ca. Pelagibacter
Abstract
AbstractIn the marine environment, phosphorus availability significantly affects the lipid composition in many cosmopolitan marine heterotrophic bacteria, including members of the SAR11 clade and the Roseobacter clade. Under phosphorus stress conditions, non-phosphorus sugar-containing glycoglycerolipids are substitutes for phospholipids in these bacteria. Although these glycoglycerolipids play an important role as surrogates for phospholipids under phosphate deprivation, glycoglycerolipid synth