Xiang, Hua


Publications
5

Members of the class Candidatus Ordosarchaeia imply an alternative evolutionary scenario from methanogens to haloarchaea

Citation
Zhao et al. (2024). The ISME Journal 18 (1)
Names
Ca. Ordosarchaeia Ca. Hikarchaeia
Abstract
Abstract The origin of methanogenesis can be traced to the common ancestor of non-DPANN archaea, whereas haloarchaea (or Halobacteria) are believed to have evolved from a methanogenic ancestor through multiple evolutionary events. However, due to the accelerated evolution and compositional bias of proteins adapting to hypersaline habitats, Halobacteria exhibit substantial evolutionary divergence from methanogens, and the identification of the closest methanogen (either Methanonatr

Comparative Genomic Insights into the Evolution of Halobacteria -Associated “ Candidatus Nanohaloarchaeota”

Citation
Zhao et al. (2022). mSystems 7 (6)
Names
Ca. Nanohaloarchaeota
Abstract
The DPANN superphylum is a group of archaea widely distributed in various habitats. They generally have small cells and have a symbiotic lifestyle with other archaea.

Comparative genomic insights into the evolution of Halobacteria-associated “Candidatus Nanohaloarchaeota”

Citation
Zhao et al. (2022).
Names
Ca. Nanosalinaceae Ca. Nanohaloarchaeota Ca. Nanoanaerosalinaceae
Abstract
AbstractThe phylum “Candidatus Nanohaloarchaeota” is a representative halophilic lineage within DPANN superphylum. They are characterized by their nanosized cells and symbiotic lifestyle with Halobacteria. However, the development of the symbiosis remains unclear for the lack of genomes located at the transition stage. Here, we performed a comparative genomic analysis of “Ca. Nanohaloarchaeota”. We propose a novel family “Candidatus Nanoanaerosalinaceae” represented by five de-replicated metagen

Metagenomic Insights Into Ecological and Phylogenetic Significances of Candidatus Natranaeroarchaeales, a Novel Abundant Archaeal Order in Soda Lake Sediment

Citation
Zhou et al. (2021).
Names
Ca. Natranaeroarchaeales
Abstract
Abstract BackgroundArchaea were originally discovered in extreme environments, and thrive in many extreme habitats including soda lakes with high pH and salinity. Characteristic and diverse archaeal community played a significant role in biogeochemical cycles; however, the archaeal community and their functions are still less-studied in the intricate sediment of soda lakes. ResultsIn this article, the archaeal community of the deep sediment (40-50 cm depth) of five artificially-separated