AbstractHuanglongbing (HLB) causes significant economic loss in citrus production worldwide. HLB is caused by Candidatus Liberibacter asiaticus (CLas), a gram-negative bacterium which inhabits the phloem exclusively. CLas infection results in accumulation of callose and reactive oxygen species in the phloem of infected plants, but little is known about the specific processes that take place during infection because of the sparse distribution of bacteria and the inaccessibility of the phloem inside the tree. In this study, we used the seed vasculatures, which accumulate a high number of CLas, as a model tissue to study CLas-host cellular interactions. In vasculature where CLas is abundant, sieve pore callose and H2O2 concentration were reduced compared to healthy seed vasculature. The expression of callose synthases (CalS) and respiratory burst oxidase homolog (RBOH) genes were downregulated in infected seeds compared to healthy ones. In leaves of HLB-infected plants, H2O2 concentration and CalS expression increased compared to uninfected leaves, but cells with CLas had lower levels of sieve plate callose compared to cells without CLas. Our results provide evidence that the bacteria manipulate cell metabolism to disable plant defenses and suggests that HLB disease is the result of a constant arms-race between the pathogen and a defense response, which is ultimately harmful to the host plant.
The phloem-limited ‘Candidatus Liberibacter asiaticus’ (Las) causes huanglongbing, a destructive citrus disease. Graft-inoculated potted plants were used to assess Las speed of movement in phloem in the greenhouse, and the impacts of temperature on plant colonization in growth-chamber experiments. For assessment of Las speed, plants were inoculated at the main stem and assessed over time by quantitative PCR (qPCR) or symptoms at various distances from the inoculum. For colonization, the plants were inoculated in one of two opposite top branches, maintained at from 8 to 20°C, from 18 to 30°C, or from 24 to 38°C daily range, and assessed by qPCR of samples taken from noninoculated shoots. For all experiments, frequencies of Las-positive sites were submitted to analysis of variance and binomial generalized linear model and logistic regression analyses. Probabilities of detecting Las in greenhouse plants were functions of time and distance from the inoculation site, which resulted in 2.9 and 3.8 cm day−1 average speed of movement. In growth chambers, the temperature impacted plant colonization by Las, new shoot emission, and symptom expression. After a 7-month exposure time, Las was absent in all new shoots in the cooler environment (average three per plant), and present in 70% at the milder environment (six shoots, severe symptoms) and 25% in the warmer environment (eight shoots, no visible symptoms). Temperature of 25.7°C was the optimum condition for plant colonization. This explains the higher impact and incidence of huanglongbing disease during the winter months or regions of milder climates in Brazil.