Wagenaar, Jaap A.

Publications (2)

Global diversity of enterococci and description of 18 novel species

Schwartzman et al. [posted content, 2023]
Names (19)
“Vagococcus giribeti” “Enterococcus clewelli” “Enterococcus willemsi” “Enterococcus lowellensis” “Enterococcus testudo” “Enterococcus myersi” “Enterococcus leclercqi” “Enterococcus ferrettii” “Enterococcus murrayae” “Enterococcus moelleringi” “Enterococcus lemimo” “Enterococcus mangumae” “Enterococcus wittei” “Enterococcus courvalini” “Enterococcus huntleyorum” “Enterococcus palustris” “Enterococcus ikei” “Enterococcus mansoni” “Enterococcus dunnyi”
ABSTRACTEnterococci are commensal gut microbes of most land animals. They diversified over hundreds of millions of years adapting to evolving hosts and host diets. Of over 60 known enterococcal species,Enterococcus faecalisandE. faeciumuniquely emerged in the antibiotic era among leading causes of multidrug resistant hospital-associated infection. The basis for the association of particular enterococcal species with a host is largely unknown. To begin deciphering enterococcal species traits that drive host association, and to assess the pool ofEnterococcus-adapted genes from which known facile gene exchangers such asE. faecalisandE. faeciummay draw, we collected 886 enterococcal strains from nearly 1,000 specimens representing widely diverse hosts, ecologies and geographies. This provided data on the global occurrence and host associations of known species, identifying 18 new species in the process expanding genus diversity by >25%. The novel species harbor diverse genes associated with toxins, detoxification, and resource acquisition.E. faecalisandE. faeciumwere isolated from a wide diversity of hosts highlighting their generalist properties, whereas most other species exhibited more restricted distributions indicative of specialized host associations. The expanded species diversity permitted theEnterococcusgenus phylogeny to be viewed with unprecedented resolution, allowing features to be identified that distinguish its four deeply rooted clades as well as genes associated with range expansion, such as B-vitamin biosynthesis and flagellar motility. Collectively, this work provides an unprecedentedly broad and deep view of the genusEnterococcus, potential threats to human health, and new insights into its evolution.SIGNIFICANCEEnterococci, host-associated microbes that are now leading drug-resistant hospital pathogens, arose as animals colonized land over 400 million years ago. To globally assess the diversity of enterococci now associated with land animals, we collected 886 enterococcal specimens from a wide range of geographies and ecologies, ranging from urban environments to remote areas generally inaccessible to humans. Species determination and genome analysis revealed host associations from generalists to specialists, and identified 18 new species, increasing the genus by over 25%. This added diversity provided greater resolution of the genus clade structure, identifying new features associated with species radiations. Moreover, the high rate of new species discovery shows that tremendous genetic diversity in Enterococcus remains to be discovered.

A Case of Persistent Diarrhea in a Man with the Molecular Detection of Various Campylobacter species and the First Isolation of candidatus Campylobacter infans

Flipse et al. (2020). Pathogens 9 (12)
General Immunology and Microbiology Immunology and Allergy Infectious Diseases Microbiology (medical) Molecular Biology
A man with a well-controlled HIV infection, previously diagnosed with lymphogranuloma venereum and treated for Hodgkin’s lymphoma, was suffering from chronic diarrhea. He travelled to Indonesia in the month prior to the start of complaints. Over a 15-month period, sequences related to Campylobactertroglodytis/upsaliensis, C. pinnepediorum/mucosalis/concisus and C. hominis were detected by 16S rRNA qPCR-based assays in various stool samples and in a colon biopsy. Culture revealed the first isolation of “candidatus Campylobacter infans”, a species identified recently by molecular methods only. The patient was treated with azithromycin, ciprofloxacin and tetracycline. To identify potential continuous exposure of the patient to Campylobacter, stool samples of the partner and the cat of the patient were analyzed and C. pinnepediorum/mucosalis/concisus and C. helveticus, respectively, were detected. The diversity in detected species in this immunocompromised patient with a lack of repeatedly consistent findings resulted in the conclusion that not any of the Campylobacter species was the primary cause of the clinical condition. This study shows the challenges in detection and interpretation of diagnostic results regarding Campylobacter.