N.C. Vasconcelos, Fernanda


Publications (2)

The Total Population Size of ‘Candidatus Liberibacter asiaticus’ Inside the Phloem of Citrus Trees and the Corresponding Metabolic Burden Related to Huanglongbing Disease Development

Citation
N.C. Vasconcelos et al. (2021). Phytopathology® 111 (7)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter asiaticus’ (CLas) is the predominant causal agent of citrus huanglongbing, the most devastating citrus disease worldwide. CLas colonizes phloem tissue and causes phloem dysfunction. The pathogen population size in local tissues and in the whole plant is critical for the development of disease symptoms by determining the load of pathogenicity factors and metabolic burden to the host. However, the total population size of CLas in a whole plant and the ratio of CLas to citrus cells in local tissues have not been addressed previously. The total CLas population size for 2.5-year-old ‘Valencia’ sweet orange on ‘Kuharske’ citrange rootstock trees was quantified using quantitative PCR to be approximately 1.74 × 109 cells/tree, whereas 7- and 20-year-old sweet orange trees were estimated to be 4.3 × 1010 cells/tree, and 6.0 × 1010 cells/tree, respectively. The majority of CLas cells were distributed in leaf tissues (55.58%), followed by those in branch (36.78%), feeder root (4.75%), trunk (2.39%), and structural root (0.51%) tissues. The ratios of citrus cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples were within approximately 39 to 79, 44 to 124, 153 to 1,355, 191 to 1,054, and 561 to 3,760, respectively, representing the metabolic burden of CLas in different organs. It was estimated that the ratios of phloem cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples are approximately 0.39 to 0.79, 0.44 to 1.24, 1.53 to 13.55, 1.91 to 10.54, and 5.61 to 37.60, respectively. Approximately 0.01% of the total citrus phloem volume was estimated to be occupied by CLas, explaining the difficulty to observe CLas in most tissues under transmission electron microscopy. The CLas titer inside the leaf was estimated to be approximately 1.64 × 106 cells/leaf or 9.2 × 104 cells cm–2 in leaves, approximately 104 times less than that of typical apoplastic bacterial pathogens. This study provides quantitative estimates of phloem colonization by bacterial pathogens and furthers the understanding of the biology and virulence mechanisms of CLas.

Spatiotemporal Dynamics of ‘Candidatus Liberibacter asiaticus’ Colonization Inside Citrus Plant and Huanglongbing Disease Development

Citation
Pandey et al. (2021). Phytopathology® 111 (6)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter asiaticus’ (CLas), the causal agent of citrus huanglongbing (HLB), colonizes inside the phloem and is naturally transmitted by the Asian citrus psyllid (ACP). Here, we investigated spatiotemporal CLas colonization in different tissues after ACP transmission. Of the nine plants successfully infected via ACP transmission, CLas was detected in the roots of all trees at 75 days postremoval of ACPs (DPR) but in the mature leaf of only one tree; this finding is consistent with the model that CLas moves passively from source to sink tissues. At 75 and 365 DPR, CLas was detected in 11.1 and 43.1% of mature leaves not fed on by ACPs during transmission, respectively, unveiling active movement to the source tissue. The difference in colonization timing of sink and source tissues indicates that CLas is capable of both passive and active movement, with passive movement being dominant. At 225 DPR, leaves fed on by ACPs during the young stage showed the highest ratio of HLB symptomatic leaves and the highest CLas titer, followed by leaves that emerged after ACP removal and mature leaves not fed on by ACPs. Importantly, our data showed that ACPs were unable to transmit CLas via feeding on mature leaves. It is estimated that it takes 3 years at most for CLas to infect the whole tree. Overall, spatiotemporal detection of CLas in different tissues after ACP transmission helps visualize the infection process of CLas in planta and subsequent HLB symptom development and provides evidence showing that young leaves should be the focus of HLB management.