Zhang, Shaoran


Publications (2)

Discovery of Novel GMPS Inhibitors of Candidatus Liberibacter Asiaticus by Structure Based Design and Enzyme Kinetic

Citation
Nan et al. (2021). Biology 10 (7)
Names
Liberibacter
Subjects
General Agricultural and Biological Sciences General Biochemistry, Genetics and Molecular Biology General Immunology and Microbiology
Abstract
Citrus production is facing an unprecedented problem because of huanglongbing (HLB) disease. Presently, no effective HLB-easing method is available when citrus becomes infected. Guanosine 5′-monophosphate synthetase (GMPS) is a key protein in the de novo synthesis of guanine nucleotides. GMPS is used as an attractive target for developing agents that are effective against the patogen infection. In this research, homology modeling, structure-based virtual screening, and molecular docking were used to discover the new inhibitors against CLas GMPS. Enzyme assay showed that folic acid and AZD1152 showed high inhibition at micromole concentrations, with AZD1152 being the most potent molecule. The inhibition constant (Ki) value of folic acid and AZD1152 was 51.98 µM and 4.05 µM, respectively. These results suggested that folic acid and AZD1152 could be considered as promising candidates for the development of CLas agents.

Evaluation of Bronopol and Disulfiram as Potential Candidatus Liberibacter asiaticus Inosine 5′-Monophosphate Dehydrogenase Inhibitors by Using Molecular Docking and Enzyme Kinetic

Citation
Nan et al. (2020). Molecules 25 (10)
Names
Ca. Liberibacter asiaticus
Subjects
Analytical Chemistry Chemistry (miscellaneous) Drug Discovery Molecular Medicine Organic Chemistry Pharmaceutical Science Physical and Theoretical Chemistry
Abstract
Citrus huanglongbing (HLB) is a destructive disease that causes significant damage to many citrus producing areas worldwide. To date, no strategy against this disease has been established. Inosine 5′-monophosphate dehydrogenase (IMPDH) plays crucial roles in the de novo synthesis of guanine nucleotides. This enzyme is used as a potential target to treat bacterial infection. In this study, the crystal structure of a deletion mutant of CLas IMPDHΔ98-201 in the apo form was determined. Eight known bioactive compounds were used as ligands for molecular docking. The results showed that bronopol and disulfiram bound to CLas IMPDHΔ98-201 with high affinity. These compounds were tested for their inhibition against CLas IMPDHΔ98-201 activity. Bronopol and disulfiram showed high inhibition at nanomolar concentrations, and bronopol was found to be the most potent molecule (Ki = 234 nM). The Ki value of disulfiram was 616 nM. These results suggest that bronopol and disulfiram can be considered potential candidate agents for the development of CLas inhibitors.