Abstract
Objective
‘Candidatus Liberibacter asiaticus’ (CLas) is associated with the devastating citrus ‘greening’ disease. All attempts to achieve axenic growth and complete Koch’s postulates with CLas have failed to date, at best yielding complex cocultures with very low CLas titers detectable only by PCR. Reductive genome evolution has rendered all pathogenic ‘Ca. Liberibacter’ spp. deficient in multiple key biosynthetic, metabolic and structural pathways that are highly unlikely to be rescued in vitro by media supplementation alone. By contrast, Liberibacter crescens (Lcr) is axenically cultured and its genome is both syntenic and highly similar to CLas. Our objective is to achieve replicative axenic growth of CLas via addition of missing culturability-related Lcr genes.
Results
Bioinformatic analyses identified 405 unique ORFs in Lcr but missing (or truncated) in all 24 sequenced CLas strains. Site-directed mutagenesis confirmed and extended published EZ-Tn5 mutagenesis data, allowing elimination of 310 of these 405 genes as nonessential, leaving 95 experimentally validated Lcr genes as essential for CLas growth in axenic culture. Experimental conditions for conjugation of large GFP-expressing plasmids from Escherichia coli to Lcr were successfully established for the first time, providing a practical method for transfer of large groups of ‘essential’ Lcr genes to CLas.
‘Candidatus Liberibacter’ spp. are uncultured insect endosymbionts and phloem-limited bacterial plant pathogens associated with diseases ranging from severe to nearly asymptomatic. ‘Ca. L. asiaticus’, causal agent of Huanglongbing or citrus “greening,” and ‘Ca. L. solanacearum’, causal agent of potato zebra chip disease, respectively threaten citrus and potato production worldwide. Research on both pathogens has been stymied by the inability to culture these agents and to reinoculate into any host. Only a single isolate of a single species of Liberibacter, Liberibacter crescens, has been axenically cultured. L. crescens strain BT-1 is genetically tractable to standard molecular manipulation techniques and has been developed as a surrogate model for functional studies of genes, regulatory elements, promoters, and secreted effectors derived from the uncultured pathogenic Liberibacters. Detailed, step-by-step, and highly reproducible protocols for axenic culture, transformation, and targeted gene knockouts of L. crescens are described. In the course of developing these protocols, we found that L. crescens is also naturally competent for direct uptake and homology-guided chromosomal integration of both linear and circular plasmid DNA. The efficiency of natural transformation was about an order of magnitude higher using circular plasmid DNA compared with linearized fragments. Natural transformation using a replicative plasmid was obtained at a rate of approximately 900 transformants per microgram of plasmid, whereas electroporation using the same plasmid resulted in 6 × 104 transformants. Homology-guided marker interruptions using either natural uptake or electroporation of nonreplicative plasmids yielded 10 to 12 transformation events per microgram of DNA, whereas similar interruptions using linear fragments via natural uptake yielded up to 34 transformation events per microgram of DNA.