“
Candidatus
Parvarchaeales” microbes may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments.
AbstractCandidatusParvarchaeales, representing a DPANN archaeal group with limited metabolic potentials and reliance on hosts for their growth, were initially found in acid mine drainage (AMD). Due to the lack of representatives, however, their ecological roles and adaptation to extreme habitats such as AMD, as well as how they diverge across the lineage remain largely unexplored. By applying genome-resolved metagenomics, 28Parvarchaeales-associated metagenome-assembled genomes (MAGs) representing two orders and five genera were recovered. Among them, we identified three new genera and proposed the namesCandidatusJingweiarchaeum,CandidatusHaiyanarchaeum, andCandidatusRehaiarchaeum with the former two belonging to a new orderCandidatusJingweiarchaeales. Further analyses of metabolic potentials revealed substantial niche differentiation between Jingweiarchaeales and Parvarchaeales. Jingweiarchaeales may rely on fermentation, salvage pathways, partial glycolysis, and pentose phosphate pathway (PPP) for energy reservation, while the metabolic potentials of Parvarchaeales might be more versatile. Comparative genomic analyses suggested that Jingweiarchaeales are more favorable to habitats with higher temperatures andParvarchaealesare better adapted to acidic environments. We further revealed that the thermal adaptation of these lineages especially for Haiyanarchaeum might rely on innate genomic features such as the usage of specific amino acids, genome streamlining, and hyperthermal featured genes such asrgy. Notably, the acidic adaptation of Parvarchaeales was possibly driven by horizontal gene transfer (HGT). Reconstruction of ancestral states demonstrated that both may originate from thermal and neutral environments and later spread to mesothermal and acidic environments. These evolutionary processes may also be accompanied by adaptation toward oxygen-rich environments via HGT.ImportanceCandidatusParvarchaeales may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments. By the discovery of potential new order-level lineages - Jingweiarchaeales and in-depth comparative genomic analysis, we unveiled the functional differentiation of these lineages. Further, we show that the adaptation to high-temperature and acidic environments of these lineages was driven by different strategies, with the prior relying more on innate genomic characteristics and the latter more on the acquisition of genes associated with acid tolerance. Finally, by reconstruction of ancestral states of OGT andpI, we showed the potential evolutionary process of Parvarchaeales-related lineages with regard to the shift from a high-temperature environment of their common ancestors to low-temperature (potentially acidic) environments.
AbstractTrace metals have been an important ingredient for life throughout Earth’s history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredoxin oxidoreductases that are expressed during growth. Catalyzed reporter deposition-fluorescence in-situ hybridization (CARD-FISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) show that W. gerlachensis preferentially assimilates xylose. Phylogenetic analyses of 78 high-quality Wolframiiraptoraceae MAGs from terrestrial and marine hydrothermal systems suggest that tungsten-associated enzymes were present in the last common ancestor of extant Wolframiiraptoraceae. Our observations imply a crucial role for tungsten-dependent metabolism in the origin and evolution of this lineage, and hint at a relic metabolic dependence on this trace metal in early anaerobic thermophiles.
The taxonomic positions of members within the family
Pseudonocardiaceae
were assessed based on phylogenomic trees reconstructed using core-proteome and genome blast distance phylogeny approaches. The closely clustered genome sequences from the type strains of validly published names within the family
Pseudonocardiaceae
were analysed using overall genome-related indices based on average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values. The family
Pseudonocardiaceae
consists of the type genus
Pseudonocardia
, as well as the genera
Actinoalloteichus
,
Actinocrispum
,
Actinokineospora
,
Actinomycetospora
,
Actinophytocola
,
Actinopolyspora
,
Actinorectispora
,
Actinosynnema
,
Allokutzneria
, Allosaccharopolyspora gen. nov.,
Amycolatopsis
,
Bounagaea
,
Crossiella
,
Gandjariella
,
Goodfellowiella
,
Haloactinomyces
,
Haloechinothrix
,
Halopolyspora
, Halosaccharopolyspora gen. nov.,
Herbihabitans
,
Kibdelosporangium
,
Kutzneria
,
Labedaea
,
Lentzea
,
Longimycelium
,
Prauserella
,
Saccharomonospora
,
Saccharopolyspora
,
Saccharothrix
,
Salinifilum
,
Sciscionella
,
Streptoalloteichus
,
Tamaricihabitans
,
Thermocrispum
,
Thermotunica
and
Umezawaea
. The G+C contents of the
Pseudonocardiaceae
genomes ranged from 66.2 to 74.6 mol% and genome sizes ranged from 3.69 to 12.28 Mbp. Based on the results of phylogenomic analysis, the names Allosaccharopolyspora coralli comb. nov., Halosaccharopolyspora lacisalsi comb. nov. and Actinoalloteichus caeruleus comb. nov. are proposed. This study revealed that
Actinokineospora mzabensis
is a heterotypic synonym of
Actinokineospora spheciospongiae
,
Lentzea deserti
is a heterotypic synonym of
Lentzea atacamensis
,
Prauserella endophytica
is a heterotypic synonym of
Prauserella coralliicola
, and
Prauserella flava
and
Prauserella sediminis
are heterotypic synonyms of
Prauserella salsuginis
. This study addresses the nomenclature conundrums of
Actinoalloteichus cyanogriseus
and
Streptomyces caeruleus
as well as
Micropolyspora internatus
and
Saccharomonospora viridis
.
Recent advances in sequencing technology promoted the blowout discovery of super tiny microbes in the
Diapherotrites
,
Parvarchaeota
,
Aenigmarchaeota
,
Nanoarchaeota
, and
Nanohaloarchaeota
(DPANN) superphylum. However, the unculturable properties of the majority of microbes impeded our investigation of their behavior and symbiotic lifestyle in the corresponding community.
“Candidatus Nitrosocaldaceae” are globally distributed in neutral or slightly alkaline hot springs and geothermally heated soils. Despite their essential role in the nitrogen cycle in high-temperature ecosystems, they remain poorly understood because they have never been isolated in pure culture, and very few genomes are available. In the present study, a metagenomics approach was employed to obtain “Ca. Nitrosocaldaceae” metagenomic-assembled genomes (MAGs) from hot spring samples collected from India and China. Phylogenomic analysis placed these MAGs within “Ca. Nitrosocaldaceae.” Average nucleotide identity and average amino acid identity analysis suggested the new MAGs represent two novel species of “Candidatus Nitrosocaldus” and a novel genus, herein proposed as “Candidatus Nitrosothermus.” Key genes responsible for chemolithotrophic ammonia oxidation and a thaumarchaeal 3HP/4HB cycle were detected in all MAGs. Furthermore, genes coding for urea degradation were only present in “Ca. Nitrosocaldus,” while biosynthesis of the vitamins, biotin, cobalamin, and riboflavin were detected in almost all MAGs. Comparison of “Ca. Nitrosocaldales/Nitrosocaldaceae” with other AOA revealed 526 specific orthogroups. This included genes related to thermal adaptation (cyclic 2,3-diphosphoglycerate, and S-adenosylmethionine decarboxylase), indicating their importance for life at high temperature. In addition, these MAGs acquired genes from members from archaea (Crenarchaeota) and bacteria (Firmicutes), mainly involved in metabolism and stress responses, which might play a role to allow this group to adapt to thermal habitats.
A novel endophytic actinobacterium, designated strain EGI 650086T, was isolated from the roots of Anabasis elatior (C.A.Mey.) Schischk. collected in Xinjiang, north-west China. The taxonomic position of the strain was investigated using a polyphasic taxonomic approach. Growth occurred at 15–40 °C, pH 6.0–8.0 and in the presence of 0–6 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequence and concatenation of 22 protein marker genes revealed that strain EGI 650086T formed a monophyletic clade within the genus
Amycolatopsis
and shared the highest sequence similarities with
Amycolatopsis nigrescens
JCM 14717T (97.1 %) and
Amycolatopsis sacchari
DSM 44468T (97.0 %). Sequence similarities with type strains of other species of the genus
Amycolatopsis
were less than 97.0 %. The average nucleotide identity and DNA–DNA hybridization values between strain EGI 650086T and the reference strains were 78.1–79.8 % and 22.1–23.0 %, respectively. The genome of strain EGI 650086T was 10.9 Mb, with a DNA G+C content of 70.1 mol%. The diagnostic diamino acid in the peptidoglycan was meso-diaminopimelic acid. The major whole-cell sugars contained arabinose, galactose, glucose and ribose. The predominant menaquinones were MK-9 (H4) and MK-9 (H2). Major fatty acids were iso-C16 : 0 and summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B). The polar lipid profile of strain EGI 650086T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides, two unknown phospholipids, an unknown glycolipid and an unknown lipid. Polyphasic taxonomic characteristics indicated that strain EGI 650086T represents a novel species of the genus
Amycolatopsis
, for which the name Amycolatopsis anabasis sp. nov. is proposed. The type strain is EGI 650086T (=KCTC 49044T=CGMCC 4.7188T).
Abstract
Background: ‘Ca. Aenigmarchaeota’ represents an evolutionary branch within the DPANN superphylum. However, their ecological roles and potential host-symbiont interactions are poorly understood.Results: Here, we analyze eight metagenomic-assembled genomes from hot spring habitats and reveal their functional potentials. Although they have limited metabolic capacities, they harbor substantial carbohydrate metabolizing abilities. Further investigation suggests that horizontal gene transfer might be the main driver that endows these abilities to ‘Ca. Aenigmarchaeota’, including enzymes involved in glycolysis. Additionally, members from the TACK superphylum and Euryarchaeota contribute substantially to the niche expansion of ‘Ca. Aenigmarchaeota’, especially genes related to carbohydrate metabolism and stress responses. Based on co-occurrence network analysis, we conjecture that ‘Ca. Aenigmarchaeota’ may be symbionts associated with TACK archaea and Euryarchaeota, though host-specificity might be wide and variable across different ‘Ca. Aenigmarchaeota’ genomes. Conclusion: This study provides significant insights into possible host-symbiont interactions and ecological roles of ‘Ca. Aenigmarchaeota’.