Nierychlo, Marta


Publications
10

A comprehensive overview of the Chloroflexota community in wastewater treatment plants worldwide

Citation
Petriglieri et al. (2023). mSystems 8 (6)
Names
“Epilinea brevis” “Epilinea” “Leptofilum” “Epilineaceae” “Epilineales” “Avedoeria danica” “Avedoeria” “Brachythrix odensensis” “Brachythrix” “Defluviilinea gracilis” “Defluviilinea” “Defluviilinea proxima” “Villigracilis vicinus” “Villigracilis adiacens” “Villigracilis propinquus” “Villigracilis” “Villigracilis affinis” “Villigracilis proximus” “Villigracilis saccharophilus” “Villigracilaceae” “Hadersleviella danica” “Hadersleviella” “Trichofilum aggregatum” “Trichofilum” “Promineifilum glycogenicum” “Leptofilum gracile” “Leptofilum proximum” “Leptovillus gracilis” “Leptovillus affinis” “Leptovillus” “Flexicrinis affinis” “Flexicrinis proximus” “Flexicrinis” “Flexifilum breve” “Flexifilum affine” “Flexifilum” “Flexifilaceae” “Amarolinea dominans” “Fredericiella danica” “Fredericiella” “Caldilinea saccharophila” “Ribeiella danica” “Ribeiella” “Kouleothrix ribensis” “Amarobacter glycogenicus” “Amarobacter” “Amarobacillus elongatus” “Amarobacillus”
Abstract
ABSTRACT Filamentous Chloroflexota are abundant in activated sludge wastewater treatment plants (WWTPs) worldwide and are occasionally associated with poor solid-liquid separation or foaming, but most of the abundant lineages remain undescribed. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide, using high-quality metagenome-assembled genomes (MAGs) and 16S rRNA amplicon data from 740 Danish and global WWTPs. Many novel taxa were descri

Low Global Diversity of Candidatus Microthrix, a Troublesome Filamentous Organism in Full-Scale WWTPs

Citation
Nierychlo et al. (2021). Frontiers in Microbiology 12
Names
Ca. Microthrix “Microthrix subdominans”
Abstract
CandidatusMicrothrix is one of the most common bulking filamentous microorganisms found in activated sludge wastewater treatment plants (WWTPs) across the globe. One species,Ca.M. parvicella, is frequently observed, but global genus diversity, as well as important aspects of its ecology and physiology, are still unknown. Here, we use the MiDAS ecosystem-specific 16S rRNA gene database in combination with amplicon sequencing of Danish and global WWTPs to investigateCa.Microthrix spp. diversity, d

“Candidatus Dechloromonas phosphoritropha” and “Ca. D. phosphorivorans”, novel polyphosphate accumulating organisms abundant in wastewater treatment systems

Citation
Petriglieri et al. (2021). The ISME Journal 15 (12)
Names
Ca. Dechloromonas phosphoritropha Ca. Dechloromonas phosphorivorans
Abstract
AbstractMembers of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species worldwide revealed in

“Candidatus Dechloromonas phosphatis” and “Candidatus Dechloromonas phosphovora”, two novel polyphosphate accumulating organisms abundant in wastewater treatment systems

Citation
Petriglieri et al. (2020).
Names
Ca. Dechloromonas phosphatis Ca. Dechloromonas phosphovora
Abstract
AbstractMembers of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate (P) removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish wastewater treatment plants. Two species were abundant, novel, and uncultured, and coul

On the evolution and physiology of cable bacteria

Citation
Kjeldsen et al. (2019). Proceedings of the National Academy of Sciences 116 (38)
Names
Electronema Electrothrix Electrothrix communis Ts Electrothrix arhusiensis Electronema aureum Ts
Abstract
Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Candidatus Electrothrix and 1 freshwater Ca.