Bodaghi, Sohrab


Publications (3)

Update and Validation of the 16S rDNA qPCR Assay for the Detection of Three ‘Candidatus Liberibacter Species’ Following Current MIQE Guidelines and Workflow

Citation
Osman et al. (2023). PhytoFrontiers™ 3 (1)
Names (2)
Ca. Liberibacter asiaticus Liberibacter
Subjects
General Medicine
Abstract
An updated real-time multiplex quantitative polymerase chain reaction (qPCR) assay was designed and validated for the simultaneous detection of three ‘ Candidatus Liberibacter species’ (CLsp), ‘ Ca. Liberibacter asiaticus’ (CLas), ‘africanus’ (CLaf), and ‘americanus’ (CLam), associated with the huanglongbing disease of citrus. The multiplex assay was designed based on the qPCR assay published in 2006 by Li et al., considering all available CLsp 16S rRNA gene sequences in GenBank and the MIQE guidelines and workflow for qPCR optimization, which became available after 2006. When using the updated multiplex CLsp qPCR assay compared with singleplex qPCR, no significant increase in quantitative cycle (Cq) values was detected. The specificity and sensitivity of the updated qPCR assay was optimal, and measuring the intra- and interassay variations confirmed the reproducibility and repeatability of the assay. The assay was also successfully used with a large number of diverse samples at independent laboratories in four countries, thus demonstrating its transferability, applicability, practicability, and robustness as different qPCR reaction conditions or instruments had a minor effect on Cq values. This updated multiplex CLsp qPCR assay can be used in a variety of citrus surveys, germplasm, or nursery stock programs that require different pathogen detection tools for their successful operation. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

An In Vitro Pipeline for Screening and Selection of Citrus-Associated Microbiota with Potential Anti-“ Candidatus Liberibacter asiaticus” Properties

Citation
Blacutt et al. (2020). Applied and Environmental Microbiology 86 (8)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Applied Microbiology and Biotechnology Biotechnology Ecology Food Science
Abstract
Globally, citrus is threatened by huanglongbing (HLB), and the lack of effective control measures is a major concern of farmers, markets, and consumers. There is compelling evidence that plant health is a function of the activities of the plant's associated microbiome. Using Liberibacter crescens , a culturable surrogate for the unculturable HLB-associated bacterium “ Candidatus Liberibacter asiaticus,” we tested the hypothesis that members of the citrus microbiome produce potential anti-“ Ca . Liberibacter asiaticus” natural products with potential anti-“ Ca . Liberibacter asiaticus” activity. A subset of isolates obtained from the microbiome inhibited L. crescens growth in an agar diffusion inhibition assay. Further fractionation experiments linked the inhibitory activity of the fungus Cladosporium cladosporioides to the fungus-produced natural products cladosporols A, C, and D, demonstrating dose-dependent antagonism to L. crescens .

Bacterial and Fungal Next Generation Sequencing Datasets and Metadata from Citrus Infected with ‘Candidatus Liberibacter asiaticus’

Citation
Ginnan et al. (2018). Phytobiomes Journal 2 (2)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Ecology Ecology, Evolution, Behavior and Systematics Molecular Biology Plant Science
Abstract
Citrus production throughout the world is being severely threatened by Huanglongbing (HLB), which is a disease associated with the bacteria ‘Candidatus Liberibacter asiaticus’ (CLas), africanus, and americanus. This Resource Announcement provides amplicon-based next generation sequencing (NGS) datasets of the bacterial and fungal rRNA internal transcribed spacer (ITS) region from CLas-infected citrus budwood, leaves, and roots from five orchards located in different geographical regions in Florida (USA). To our knowledge, this is the first amplicon-based NGS study (i) that describes the fungal taxa associated with citrus and (ii) that provides comparative analyses of the bacterial and fungal taxa associated with budwood, leaves, and roots from the same citrus trees. This report also provides the sample metadata linked to these sequence datasets including HLB severity rating, tissue type, citrus rootstock, citrus scion, geographical region, and year trees were planted. When analyzed with other similar datasets, we anticipate that researchers will be able to obtain a greater understanding of the factors that shape the citrus microbiome as well as identify individual microorganisms or consortia of microorganisms that play a role in HLB suppression or exacerbation.