Harrison, Kyle


Publications (5)

Effects of ‘Candidatus Liberibacter solanacearum’ haplotypes A and B on tomato gene expression and geotropism

Citation
Harrison et al. (2022). BMC Plant Biology 22 (1)
Names
Ca. Liberibacter solanacearum
Subjects
Plant Science
Abstract
Abstract Background The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen ‘Candidatus Liberibacter solanacearum’ (or Lso). Disease symptom severity is dependent on Lso haplotype: tomato plants infected with Lso haplotype B experience more severe symptoms and higher mortality compared to plants infected with Lso haplotype A. By characterizing the molecular differences in the tomato plant’s responses to Lso haplotypes, the key components of LsoB virulence can be identified and, thus, targeted for disease mitigation strategies. Results To characterize the tomato plant genes putatively involved in the differential immune responses to Lso haplotypes A and B, RNA was extracted from tomato ‘Moneymaker’ leaves 3 weeks after psyllid infestation. Gene expression levels were compared between uninfected tomato plants (i.e., controls and plants infested with Lso-free psyllids) and infected plants (i.e., plants infested with psyllids infected with either Lso haplotype A or Lso haplotype B). Furthermore, expression levels were compared between plants infected with Lso haplotype A and plants infected with Lso haplotype B. A whole transcriptome analysis identified 578 differentially expressed genes (DEGs) between uninfected and infected plants as well as 451 DEGs between LsoA- and LsoB-infected plants. These DEGs were primarily associated with plant defense against abiotic and biotic stressors, growth/development, plant primary metabolism, transport and signaling, and transcription/translation. These gene expression changes suggested that tomato plants traded off plant growth and homeostasis for improved defense against pathogens, especially when infected with LsoB. Consistent with these results, tomato plant growth experiments determined that LsoB-infected plants were significantly stunted and had impaired negative geotropism. However, it appeared that the defense responses mounted by tomatoes were insufficient for overcoming the disease symptoms and mortality caused by LsoB infection, while these defenses could compensate for LsoA infection. Conclusion The transcriptomic analysis and growth experiments demonstrated that Lso-infected tomato plants underwent gene expression changes related to abiotic and biotic stressors, impaired growth/development, impaired plant primary metabolism, impaired transport and signaling transduction, and impaired transcription/translation. Furthermore, the transcriptomic analysis also showed that LsoB-infected plants, relative to LsoA-infected, experienced more severe stunting, had improved responses to some stressors and impaired responses to others, had poorer transport and signaling transduction, and had impaired carbohydrate synthesis and photosynthesis.

Mycorrhization Mitigates Disease Caused by “Candidatus Liberibacter solanacearum” in Tomato

Citation
Tiénébo et al. (2019). Plants 8 (11)
Names
Ca. Liberibacter solanacearum
Subjects
Ecology Ecology, Evolution, Behavior and Systematics Plant Science
Abstract
Disease caused by the bacterial pathogen “Candidatus Liberibacter solanacearum” (Lso) represents a serious threat to solanaceous crop production. Insecticide applications to control the psyllid vector, Bactericera cockerelli Šulc (Hemiptera: Triozidae) has led to the emergence of resistance in psyllids populations. Efforts to select natural resistant cultivars have been marginally successful and have been complicated by the presence of distinct Lso haplotypes (LsoA, LsoB) differing in symptoms severity on potato and tomato. A potentially promising management tool is to boost host resistance to the pathogen and/or the insect vector by promoting mycorrhization. Here we tested the hypothesis that mycorrhizal fungi can mitigate the effect of Lso infection on tomato plants. The presence of mycorrhizal fungi substantially delayed and reduced the incidence of Lso-induced symptoms on tomato as compared to non-mycorrhized plants. However, PCR with specific Lso primers revealed that mycorrhization did not prevent Lso transmission or translocation to newly formed leaves. Mycorrhization significantly reduced oviposition by psyllids harboring LsoA and survival of nymphs from these eggs. However, mycorrhization had no effect on oviposition by psyllids harboring LsoB or the survival of nymphs from parents harboring LsoB. These findings indicate the use of mycorrhizal fungi is a promising strategy for the mitigation of disease caused by both LsoA and LsoB and warrants additional field testing.

Infection by Candidatus Liberibacter solanacearum’ haplotypes A and B in Solanum lycopersicum ‘Moneymaker’

Citation
Mendoza-Herrera et al. (2018). Plant Disease 102 (10)
Names
Ca. Liberibacter solanacearum
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter solanacearum’ is a plant pathogen associated with diseases affecting several crops of the Solanaceae and Apiaceae families. Two ‘Ca. L. solanacearum’ haplotypes (LsoA and LsoB) infect solanaceous crops in North America and are transmitted by the tomato psyllid Bactericera cockerelli. Although both ‘Ca. L. solanacearum’ haplotypes cause zebra chip in potato, the diseases associated with each haplotype in tomato (Solanum lycopersicum) have not been described. ‘Ca. L. solanacearum’-infected tomato plants exhibit symptoms resembling those of permanent yellowing disease (known in Mexico as “permanente del tomate”) and sometimes called psyllid yellows. In this study, the symptoms associated with each ‘Ca. L. solanacearum’ haplotype in tomato were compared, and the bacterial abundance in different nodes of the plants was measured by quantitative polymerase chain reaction. Surprisingly, both plant phenotype and bacterium distribution were different between LsoA- and LsoB-infected plants. Plants infected with LsoB died prematurely, whereas those infected with LsoA did not. Across the measured time points, LsoB abundance in infected plants was consistent with previous reports describing a sink to source gradient, while such gradient was only observed in LsoA-infected plants early after infection. This is the first report describing the differences in symptoms in tomato associated with two ‘Ca. L. solanacearum’ haplotypes, LsoA and LsoB.