Duan, Yong-Ping


Publications (5)

Highly Sensitive and Rapid Detection of Citrus Huanglongbing Pathogen (‘Candidatus Liberibacter asiaticus’) Using Cas12a-Based Methods

Citation
Wheatley et al. (2021). Phytopathology® 111 (12)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
Citrus huanglongbing (HLB) or greening is one of the most devastating diseases of citrus worldwide. Sensitive detection of its causal agent, ‘Candidatus Liberibacter asiaticus’ (CLas), is critical for early diagnosis and successful management of HLB. However, current nucleic acid–based detection methods are often insufficient for the early detection of CLas from asymptomatic tissue and unsuitable for high-throughput and field-deployable diagnosis of HLB. Here we report the development of the Cas12a-based DNA endonuclease-targeted CRISPR trans reporter (DETECTR) assay for highly specific and sensitive detection of CLas nucleic acids from infected samples. The DETECTR assay, which targets the five-copy nrdB gene specific to CLas, couples isothermal amplification with Cas12a transcleavage of a fluorescent reporter oligonucleotide and enables detection of CLas nucleic acids at the attomolar level. The DETECTR assay was capable of specifically detecting the presence of CLas across different infected citrus, periwinkle, and psyllid samples and shown to be compatible with lateral flow assay technology for potential field-deployable diagnosis. The improvements in detection sensitivity and flexibility of the DETECTR technology position the assay as a potentially suitable tool for early detection of CLas in infected regions.

Heat Treatment Eliminates ‘Candidatus Liberibacter asiaticus’ from Infected Citrus Trees Under Controlled Conditions

Citation
Hoffman et al. (2013). Phytopathology® 103 (1)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
Huanglongbing (HLB) is one of the most destructive diseases of citrus worldwide. The three known causal agents of HLB are species of α-proteobacteria: ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. africanus’, and ‘Ca. L. americanus’. Previous studies have found distinct variations in temperature sensitivity and tolerance among these species. Here, we describe the use of controlled heat treatments to cure HLB caused by ‘Ca. L. asiaticus’, the most prevalent and heat-tolerant species. Using temperature-controlled growth chambers, we evaluated the time duration and temperature required to suppress or eliminate the ‘Ca. L. asiaticus’ bacterium in citrus, using various temperature treatments for time periods ranging from 2 days to 4 months. Results of quantitative polymerase chain reaction (qPCR) after treatment illustrate significant decreases in the ‘Ca. L. asiaticus’ bacterial titer, combined with healthy vigorous growth by all surviving trees. Repeated qPCR testing confirmed that previously infected, heat-treated plants showed no detectable levels of ‘Ca. L. asiaticus’, while untreated control plants remained highly infected. Continuous thermal exposure to 40 to 42°C for a minimum of 48 h was sufficient to significantly reduce titer or eliminate ‘Ca. L. asiaticus’ bacteria entirely in HLB-affected citrus seedlings. This method may be useful for the control of ‘Ca. Liberibacter’-infected plants in nursery and greenhouse settings.

Multilocus microsatellite analysis of 'Candidatus Liberibacter asiaticus' associated with citrus Huanglongbing worldwide

Citation
Islam et al. (2012). BMC Microbiology 12 (1)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Microbiology Microbiology (medical)
Abstract
Abstract Background Huanglongbing (HLB) is one of the most destructive citrus diseases in the world. The disease is associated with the presence of a fastidious, phloem-limited α- proteobacterium, 'Candidatus Liberibacter asiaticus', 'Ca. Liberibacter africanus' or 'Ca. Liberibacter americanus'. HLB-associated Liberibacters have spread to North America and South America in recent years. While the causal agents of HLB have been putatively identified, information regarding the worldwide population structure and epidemiological relationships for 'Ca. L. asiaticus' is limited. The availability of the 'Ca. L. asiaticus' genome sequence has facilitated development of molecular markers from this bacterium. The objectives of this study were to develop microsatellite markers and conduct genetic analyses of 'Ca. L. asiaticus' from a worldwide collection. Two hundred eighty seven isolates from USA (Florida), Brazil, China, India, Cambodia, Vietnam, Taiwan, Thailand, and Japan were analyzed. Results A panel of seven polymorphic microsatellite markers was developed for 'Ca. L. asiaticus'. Microsatellite analyses across the samples showed that the genetic diversity of 'Ca. L. asiaticus' is higher in Asia than Americas. UPGMA and STRUCTURE analyses identified three major genetic groups worldwide. Isolates from India were genetically distinct. East-southeast Asian and Brazilian isolates were generally included in the same group; a few members of this group were found in Florida, but the majority of the isolates from Florida were clustered separately. eBURST analysis predicted three founder haplotypes, which may have given rise to three groups worldwide. Conclusions Our results identified three major genetic groups of 'Ca. L. asiaticus' worldwide. Isolates from Brazil showed similar genetic makeup with east-southeast Asian dominant group, suggesting the possibility of a common origin. However, most of the isolates recovered from Florida were clustered in a separate group. While the sources of the dominant 'Ca. L. asiaticus' in Florida were not clearly understood, the less-pervasive groups may have been introduced directly from Asia or via Brazil. Notably, the recent outbreak of HLB in Florida probably occurred through multiple introductions. Microsatellite markers developed in this study provide adequate discriminatory power for the identification and differentiation of closely-related isolates, as well as for genetic studies of 'Ca. L. asiaticus'.