Abstract
Zebra chip, is a potato disease associated with the bacterium ‘Candidatus Liberibacter solanacearum’ (Lso) and vectored by the potato psyllid, Bactericera cockerelli Šulc. Potato psyllids are native to North America, where four haplotypes have been described. They are able to colonize a wide range of solanaceous species, crops, and weeds. The epidemiology of zebra chip disease is still poorly understood and might involve the different haplotypes of psyllids as well as two haplotypes of Lso. As several perennial weeds have been recognized as potential host for potato psyllids and Lso, a yearly monitoring of several patches of bittersweet nightshade (Solanum dulcamara) and field bindweed (Convolvulus arvensis) located in the potato-growing region of southern Idaho was conducted from 2013 to 2017, to gain insight into psyllid dynamics in non-potato hosts and Lso presence in the fields. Potato psyllids caught on each host were individually tested for Lso, and a subset were haplotyped based on the CO1 gene, along with the haplotyping of Lso in positive samples. On bittersweet nightshade, the Northwestern haplotype was numerically dominant, with around 2.7% of psyllids found to be carrying either Lso haplotype A or B, suggesting a limited role in zebra chip persistence, which has infected Idaho fields at a low occurrence since the 2012 outbreak. Field bindweed was found to be a transient, non-overwintering host for potato psyllid of Northwestern, Western and Central haplotypes late in the season, suggesting minor, if any, role in persistence of Lso and field infestation by potato psyllids.
‘Candidatus Liberibacter solanacearum’ (Lso) is an uncultured, phloem-associated bacterium causing a severe tuber disease in potato called zebra chip (ZC). Seven haplotypes of Lso have been described in different hosts, with haplotypes A and B found associated with infections in potato and tomato. In the field, Lso is transmitted by the potato psyllid (Bactericera cockerelli), and between 2011 and 2015, a significant change in Lso haplotype prevalence was previously reported in Idaho: from exclusively A haplotype found in tested psyllids in 2012 to mainly B haplotype found in collected psyllids in 2015. However, prevalence of Lso haplotypes in Idaho was not analyzed in potato tubers exhibiting symptoms of ZC. To fill in this knowledge gap, prevalence of Lso haplotypes was investigated in potato tubers harvested in southern Idaho between 2012 and 2018, and it was found to change from exclusively A haplotype in the 2012 season to an almost equal A and B haplotype distribution during the 2016 season. During the same period, haplotype distribution of Lso in psyllid vectors collected using yellow sticky traps also changed, but in psyllids, the shift from A haplotype of Lso to B haplotype was complete, with no A haplotype detected in 2016 to 2018. The changes in the haplotype prevalence of the Lso circulating in potato fields in southern Idaho may be, among other factors, responsible for a decrease in the ZC incidence in Idaho potato fields between an outbreak of the disease in 2012 and a very low level of ZC afterward.
Zebra chip (ZC) disease of potato is associated with the putative pathogen ‘Candidatus Liberibacter solanacearum’, which is transmitted by the potato psyllid Bactericera cockerelli (Hem., Triozidae). The present study was initiated to investigate ‘Ca. L. solanacearum’ development during and following typical commercial storage practices. Using bacteriliferous psyllids, Russet Norkotah potato tubers were infested in field cages 14, 10, and 4 days before harvest. Changes in ‘Ca. L. solanacearum’ detection rate, ‘Ca. L. solanacearum’ titer, and concentrations of phenolic compounds were documented throughout storage. ‘Ca. L. solanacearum’ titer continued to increase during storage. Although significant increases in the frequency of ‘Ca. L. solanacearum’ detection were observed in all infestation treatments, the impact of ‘Ca. L. solanacearum’ infection on tuber quality remained comparatively low in plants infected 4 days before harvest, because the majority of the tubers remained asymptomatic. Minimizing storage and retail chain movement durations would help to limit ‘Ca. L. solanacearum’ impact on tuber quality in tubers infected 14 and 10 days before harvest. This study also demonstrated that ‘Ca. L. solanacearum’ can relocate from a newly infected leaf to a tuber in as little as 4 days. Psyllid management is recommended until at least 4 days before green harvest, when psyllid pressure is high in fields in which tubers are destined for commercial storage.
Zebra chip (ZC) disease, a serious threat to the potato industry, is caused by the bacterium ‘Candidatus Liberibacter solanacearum’ (Lso). Five haplotypes (hapA to hapE) of this pathogen have been described so far in different crops, with only hapA and hapB being associated with ZC in potato. Both haplotypes are vectored and transmitted to a variety of solanaceaeous plants by the tomato/potato psyllid, Bactericera cockerelli (Šulc). Psyllids are native to North America, and four haplotypes have been identified and named based on their predominant geographic association: Northwestern, Central, Western, and Southwestern. Although all psyllid haplotypes have been found in southern Idaho potato fields, data on relative haplotype abundances and dynamic changes in the fields over time have not previously been reported. Here, psyllid samples collected in Idaho potato fields from 2012 to 2015 were used to clarify spatial and temporal patterns in distribution and abundance of psyllid and Lso haplotypes. A shift from hapA toward hapB population of Lso was revealed during these four seasons, indicating possible evolution of Lso in Idaho fields. Although we confirmed that Western psyllids were the most abundant by far during the four seasons of observation, we also observed changes in abundance of other haplotypes, including increased diversity of psyllid haplotypes during 2015. Seasonal changes observed for the Northwestern and Central haplotypes could potentially be linked to psyllid migration and/or habitat changes. South-central Idaho exhibited more diversity in psyllid haplotypes than southwestern Idaho.