Zhou, Changyong


Publications (17)

A Sec-dependent effector, CLIBASIA_04425, contributes to virulence in ‘Candidatus Liberibater asiaticus’

Citation
Zhang et al. (2023). Frontiers in Plant Science 14
Names (2)
Ca. Liberibater asiaticus Ca. Liberibacter asiaticus
Subjects
Plant Science
Abstract
Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide, mainly caused by ‘Candidatus Liberibacter asiaticus’ (CLas). It encodes a large number of Sec-dependent effectors that contribute to HLB progression. In this study, an elicitor triggering ROS burst and cell death in Nicotiana benthamiana, CLIBASIA_04425 (CLas4425), was identified. Of particular interest, its cell death-inducing activity is associated with its subcellular localization and the cytoplasmic receptor Botrytis-induced kinase 1 (BIK1). Compared with CLas infected psyllids, CLas4425 showed higher expression level in planta. The transient expression of CLas4425 in N. benthamiana and its overexpression in Citrus sinensis enhanced plant susceptibility to Pseudomonas syringae pv. tomato DC3000 ΔhopQ1-1 and CLas, respectively. Furthermore, the salicylic acid (SA) level along with the expression of genes NPR1/EDS1/NDR1/PRs in SA signal transduction was repressed in CLas4425 transgenic citrus plants. Taken together, CLas4425 is a virulence factor that promotes CLas proliferation, likely by interfering with SA-mediated plant immunity. The results obtained facilitate our understanding of CLas pathogenesis.

An effector of ‘Candidatus Liberibacter asiaticus’ manipulates autophagy to promote bacterial infection

Citation
Shi et al. (2023). Journal of Experimental Botany
Names (1)
Ca. Liberibacter asiaticus
Subjects
Physiology Plant Science
Abstract
Abstract Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. ‘Wanjincheng’ orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.

Interaction between the flagellum of Candidatus Liberibacter asiaticus and the vitellogenin-like protein of Diaphorina citri significantly influences CLas titer

Citation
Peng et al. (2023). Frontiers in Microbiology 14
Names (1)
Ca. Liberibacter asiaticus
Subjects
Microbiology Microbiology (medical)
Abstract
Huanglongbing (HLB) is a global devastating citrus disease that is mainly caused by “Candidatus Liberibacter asiaticus” (CLas). It is mostly transmitted by the insect Asian citrus psyllid (ACP, Diaphorina citri) in a persistent and proliferative manner. CLas traverses multiple barriers to complete an infection cycle and is likely involved in multiple interactions with D. citri. However, the protein–protein interactions between CLas and D. citri are largely unknown. Here, we report on a vitellogenin-like protein (Vg_VWD) in D. citri that interacts with a CLas flagellum (flaA) protein. We found that Vg_VWD was upregulated in CLas-infected D. citri. Silencing of Vg_VWD in D. citri via RNAi silencing significantly increased the CLas titer, suggesting that Vg_VWD plays an important role in the CLas–D. citri interaction. Agrobacterium-mediated transient expression assays indicated that Vg_VWD inhibits BAX- and INF1-triggered necrosis and suppresses the callose deposition induced by flaA in Nicotiana benthamiana. These findings provide new insights into the molecular interaction between CLas and D. citri.

A “Candidatus Liberibacter asiaticus”-secreted polypeptide suppresses plant immune responses in Nicotiana benthamiana and Citrus sinensis

Citation
Shen et al. (2022). Frontiers in Plant Science 13
Names (1)
Ca. Liberibacter asiaticus
Subjects
Plant Science
Abstract
Citrus Huanglongbing (HLB), known as the most economically devastating disease in citrus industry, is mainly caused by phloem-restricted Gram-negative bacterium “Candidatus Liberibacter asiaticus” (CLas). To date, CLas is still unculturable in vitro, which has been dramatically delaying the research on its pathogenesis, and only few Sec-dependent effectors (SDEs) have been identified to elucidate the pathogenesis of CLas. Here, we confirmed that a CLas-secreted Sec-dependent polypeptide, namely SECP8 (CLIBASIA_05330), localized in nucleus, cytoplasm and cytoplasmic membrane, and showed remarkably higher transcript abundance in citrus than in psyllids. Potato virus X (PVX)-mediated transient expression assays indicated that mSECP8 (the mature form of SECP8) suppressed pro-apoptotic mouse protein BAX and Phytophthora infestans elicitin INF1-triggered hypersensitive response (HR) associated phenotypes, including cell death, H2O2 accumulation and callose deposition. Intriguingly, mSECP8 also inhibited SDE1 (CLIBASIA_05315)-induced water-soaked and dwarfing symptoms in Nicotiana benthamiana. In addition, mSECP8 can promote the susceptibility of transgenic Wanjincheng orange (Citrus sinensis) to CLas invasion and further HLB symptom development, and it contributes to the proliferation of Xanthomonas citri subsp. citri (Xcc). Moreover, the expression of ten immunity-related genes were significantly down-regulated in mSECP8 transgenic citrus than those in wide-type (WT) plants. Overall, we propose that mSECP8 may serve as a novel broad-spectrum suppressor of plant immunity, and provide the first evidence counteractive effect among CLas effectors. This study will enrich and provide new evidences for elucidating the pathogenic mechanisms of CLas in citrus host.

Population Diversity of ‘Candidatus Liberibacter asiaticus’ and Diaphorina citri in Sichuan: A Case Study for Huanglongbing Monitoring and Interception

Citation
Cui et al. (2022). Plant Disease 106 (6)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
Citrus huanglongbing (HLB) is present in 10 provinces in China and is associated with ‘Candidatus Liberibacter asiaticus’ (CLas), which is transmitted by the Asian citrus psyllid (Diaphorina citri, ACP). To date, HLB and ACP have expanded to Yibin city of Sichuan Province, posing an imminent threat to the citrus belt of the upper and middle reaches of the Yangtze River, an important late-maturing citrus-producing area in China. To understand the epidemiological route of CLas and ACP in newly invaded regions of Sichuan and thereby better establish an HLB interception zone ranging from Leibo to Yibin, we evaluated the molecular variability of 19 CLas draft genomes from citrus or dodder (Cuscuta campestris). They include three type-specific prophage loci, three variable number tandem repeat loci, a miniature inverted-repeat transposable element, and population diversity of 44 ACP mitochondrial genomes. The results indicated that CLas isolates in the newly invaded area (Pingshan) were more diverse than those in the HLB endemic areas (Leibo and Ningnan). Phylogenetic analysis based on mitochondrial genomes demonstrated that ACPs in Leibo, Pingshan, and Xuzhou (rural areas) represent a new mitochondrial group (MG4), distinguished by the three unique single-nucleotide polymorphisms in cox1, nad4, and cytb. However, the ACPs sampled from the urban areas of Cuiping and Xuzhou belonged to the southeastern China group (MG2-1). Altogether, our study revealed multiple sources of ACP and CLas in the HLB interception zone and proposed their transmission route. This study contributes to the formulation of precise HLB prevention and control strategies in the HLB interception zone in Sichuan and could be useful for HLB management efforts in other regions.

Integrated Analysis of the miRNAome and Transcriptome Reveals miRNA–mRNA Regulatory Networks in Catharanthus roseus Through Cuscuta campestris-Mediated Infection With “Candidatus Liberibacter asiaticus”

Citation
Zeng et al. (2022). Frontiers in Microbiology 13
Names (1)
Ca. Liberibacter asiaticus
Subjects
Microbiology Microbiology (medical)
Abstract
Citrus Huanglongbing (HLB) is the most devastating disease of citrus caused by the Gram-negative phloem-limited bacterium “Candidatus Liberibacter asiaticus” (CLas). It can be transmitted by the Asian citrus psyllid “Diaphorina citri,” by grafting, and by the holoparasitic dodder. In this study, the non-natural host periwinkle (Catharanthus roseus) was infected via dodder (Cuscuta campestris) from CLas-infected citrus plants, and the asymptomatic leaves (AS) were subjected to transcriptomic and small-RNA profiling. The results were analyzed together with a transcriptome dataset from the NCBI repository that included leaves for which symptoms had just occurred (S) and yellowing leaves (Y). There were 3,675 differentially expressed genes (DEGs) identified in AS, and 6,390 more DEGs in S and further 2109 DEGs in Y. These DEGs were commonly enriched in photosystem, chloroplast, membrane, oxidation-reduction process, metal/zinc ion binding on GO. A total of 14,974 DEGs and 336 DE miRNAs (30 conserved and 301 novel) were identified. Through weighted gene co-expression network and nested network analyses, two critical nested miRNA–mRNA regulatory networks were identified with four conserved miRNAs. The primary miR164-NAC1 network is potentially involved in plant defense responses against CLas from the early infection stage to symptom development. The secondary network revealed the regulation of secondary metabolism and nutrient homeostasis through miR828-MYB94/miR1134-HSF4 and miR827-ATG8 regulatory networks, respectively. The findings discovered new potential mechanisms in periwinkle–CLas interactions, and its confirmation can be done in citrus–CLas system later on. The advantages of periwinkle plants in facilitating the quick establishment and greater multiplication of CLas, and shortening latency for disease symptom development make it a great surrogate for further studies, which could expedite our understanding of CLas pathogenesis.