AbstractProtists frequently host diverse bacterial symbionts, in particular those affiliated with the order Holosporales (Alphaproteobacteria). All characterised members of this bacterial lineage have been retrieved in obligate association with a wide range of eukaryotes, especially multiple protist lineages (e.g. amoebozoans, ciliates, cercozoans, euglenids, and nucleariids), as well as some metazoans (especially arthropods and related ecdysozoans). While the genus Paramecium and other ciliates have been deeply investigated for the presence of symbionts, known members of the family “Candidatus Paracaedibacteraceae” (Holosporales) are currently underrepresented in such hosts. Herein, we report the description of “Candidatus Intestinibacterium parameciiphilum” within the family “Candidatus Paracaedibacteraceae”, inhabiting the cytoplasm of Paramecium biaurelia. This novel bacterium is almost twice as big as its relative “Candidatus Intestinibacterium nucleariae” from the opisthokont Nuclearia and does not present a surrounding halo. Based on phylogenetic analyses of 16S rRNA gene sequences, we identified six further potential species-level lineages within the genus. Based on the provenance of the respective samples, we investigated the environmental distribution of the representatives of “Candidatus Intestinibacterium” species. Obtained results are consistent with an obligate endosymbiotic lifestyle, with protists, in particular freshwater ones, as hosts. Thus, available data suggest that association with freshwater protists could be the ancestral condition for the members of the “Candidatus Intestinibacterium” genus.
Extensive search for new endosymbiotic systems in ciliates occasionally reverts us to the endosymbiotic bacteria described in the pre-molecular biology era and, hence, lacking molecular characterization. A pool of these endosymbionts has been referred to as a hidden bacterial biodiversity from the past. Here, we provide a description of one of such endosymbionts, retrieved from the ciliate Paramecium nephridiatum. This curve-shaped endosymbiont (CS), which shared the host cytoplasm with recently described “Candidatus Megaira venefica”, was found in the same host and in the same geographic location as one of the formerly reported endosymbiotic bacteria and demonstrated similar morphology. Based on morphological data obtained with DIC, TEM and AFM and molecular characterization by means of sequencing 16S rRNA gene, we propose a novel genus, “Candidatus Mystax”, with a single species “Ca. Mystax nordicus”. Phylogenetic analysis placed this species in Holosporales, among Holospora-like bacteria. Contrary to all Holospora species and many other Holospora-like bacteria, such as “Candidatus Gortzia”, “Candidatus Paraholospora” or “Candidatus Hafkinia”, “Ca. Mystax nordicus” was never observed inside the host nucleus. “Ca. Mystax nordicus” lacked infectivity and killer effect. The striking peculiarity of this endosymbiont was its ability to form aggregates with the host mitochondria, which distinguishes it from Holospora and Holospora-like bacteria inhabiting paramecia.
Most of the microorganisms responsible for vector-borne diseases (VBD) have hematophagous arthropods as vector/reservoir. Recently, many new species of microorganisms phylogenetically related to agents of VBD were found in a variety of aquatic eukaryotic hosts; in particular, numerous new bacterial species related to the genus Rickettsia (Alphaproteobacteria, Rickettsiales) were discovered in protist ciliates and other unicellular eukaryotes. Although their pathogenicity for humans and terrestrial animals is not known, several indirect indications exist that these bacteria might act as etiological agents of possible VBD of aquatic organisms, with protists as vectors. In the present study, a novel strain of the Rickettsia-Like Organism (RLO) endosymbiont “Candidatus (Ca.) Trichorickettsia mobilis” was identified in the macronucleus of the ciliate Paramecium multimicronucleatum. We performed transfection experiments of this RLO to planarians (Dugesia japonica) per os. Indeed, the latter is a widely used model system for studying bacteria pathogenic to humans and other Metazoa. In transfection experiments, homogenized paramecia were added to food of antibiotic-treated planarians. Treated and non-treated (i.e. control) planarians were investigated at day 1, 3, and 7 after feeding for endosymbiont presence by means of PCR and ultrastructural analyses. Obtained results were fully concordant and suggest that this RLO endosymbiont can be transiently transferred from ciliates to metazoans, being detected up to day 7 in treated planarians’ enterocytes. Our findings might offer insights into the potential role of ciliates or other protists as putative vectors for diseases caused by Rickettsiales or other RLOs and occurring in fish farms or in the wild.
AbstractRickettsialesare a lineage of obligatorily intracellularAlphaproteobacteria, encompassing important human pathogens, manipulators of host reproduction, and mutualists. Here we report the discovery of a novelRickettsialesbacterium associated withParamecium, displaying a unique extracellular lifestyle, including the ability to replicate outside host cells. Genomic analyses show that the bacterium possesses a higher capability to synthesize amino acids, compared to all investigatedRickettsiales. Considering these observations, phylogenetic and phylogenomic reconstructions, and re-evaluating the different means of interaction ofRickettsialesbacteria with eukaryotic cells, we propose an alternative scenario for the evolution of intracellularity inRickettsiales. According to our reconstruction, theRickettsialesancestor would have been an extracellular and metabolically versatile bacterium, while obligate intracellularity and genome reduction would have evolved later in parallel and independently in different sub-lineages. The proposed new scenario could impact on the open debate on the lifestyle of the last common ancestor of mitochondria withinAlphaproteobacteria.
ABSTRACT
In the past 10 years, the number of endosymbionts described within the bacterial order
Rickettsiales
has constantly grown. Since 2006, 18 novel
Rickettsiales
genera inhabiting protists, such as ciliates and amoebae, have been described. In this work, we characterize two novel bacterial endosymbionts from
Paramecium
collected near Bloomington, IN. Both endosymbiotic species inhabit the cytoplasm of the same host. The Gram-negative bacterium “
Candidatus
Bealeia paramacronuclearis” occurs in clumps and is frequently associated with the host macronucleus. With its electron-dense cytoplasm and a distinct halo surrounding the cell, it is easily distinguishable from the second smaller symbiont, “
Candidatus
Fokinia cryptica,” whose cytoplasm is electron lucid, lacks a halo, and is always surrounded by a symbiontophorous vacuole. For molecular characterization, the small-subunit rRNA genes were sequenced and used for taxonomic assignment as well as the design of species-specific oligonucleotide probes. Phylogenetic analyses revealed that “
Candidatus
Bealeia paramacronuclearis” clusters with the so-called “basal”
Rickettsiales
, and “
Candidatus
Fokinia cryptica” belongs to “
Candidatus
Midichloriaceae.” We obtained tree topologies showing a separation of
Rickettsiales
into at least two groups: one represented by the families
Rickettsiaceae
,
Anaplasmataceae
, and “
Candidatus
Midichloriaceae” (RAM clade), and the other represented by “basal
Rickettsiales
,” including “
Candidatus
Bealeia paramacronuclearis.” Therefore, and in accordance with recent publications, we propose to limit the order
Rickettsiales
to the RAM clade and to raise “basal
Rickettsiales
” to an independent order,
Holosporales
ord. nov., inside
Alphaproteobacteria
, which presently includes four family-level clades. Additionally, we define the family “
Candidatus
Hepatincolaceae” and redefine the family
Holosporaceae
.
IMPORTANCE
In this paper, we provide the characterization of two novel bacterial symbionts inhabiting the same
Paramecium
host (Ciliophora, Alveolata). Both symbionts belong to “traditional”
Rickettsiales
, one representing a new species of the genus “
Candidatus
Fokinia” (“
Candidatus
Midichloriaceae”), and the other representing a new genus of a “basal”
Rickettsiales
. According to newly characterized sequences and to a critical revision of recent literature, we propose a taxonomic reorganization of “traditional”
Rickettsiales
that we split into two orders:
Rickettsiales sensu stricto
and
Holosporales
ord. nov. This work represents a critical revision, including new records of a group of symbionts frequently occurring in protists and whose biodiversity is still largely underestimated.