Dally, Ellen L.


Publications (6)

Genotyping Points to Divergent Evolution of ‘Candidatus Phytoplasma asteris’ Strains Causing North American Grapevine Yellows and Strains Causing Aster Yellows

Citation
Davis et al. (2018). Plant Disease 102 (9)
Names (1)
Ca. Phytoplasma asteris
Subjects
Agronomy and Crop Science Plant Science
Abstract
Grapevine yellows diseases occur in cultivated grapevine (Vitis vinifera L.) on several continents, where the diseases are known by different names depending upon the identities of the causal phytoplasmas. In this study, phytoplasma strains associated with grapevine yellows disease (North American grapevine yellows [NAGY]) in vineyards of Pennsylvania were characterized as belonging to 16S ribosomal RNA (rRNA) gene restriction fragment length polymorphism group 16SrI (aster yellows phytoplasma group), subgroup 16SrI-B (I-B), and variant subgroup I-B*. The strains (NAGYI strains) were subjected to genotyping based on analyses of 16S rRNA and secY genes, and to in silico three-dimensional modeling of the SecY protein. Although the NAGYI strains are closely related to aster yellows (AY) phytoplasma strains and are classified like AY strains in subgroup I-B or in variant subgroup I-B*, the results from genotyping and protein modeling may signal ongoing evolutionary divergence of NAGYI strains from related strains in subgroup 16SrI-B.

Unraveling the Etiology of North American Grapevine Yellows (NAGY): Novel NAGY Phytoplasma Sequevars Related to ‘Candidatus Phytoplasma pruni’

Citation
Davis et al. (2015). Plant Disease 99 (8)
Names (1)
Ca. Phytoplasma pruni
Subjects
Agronomy and Crop Science Plant Science
Abstract
North American grapevine yellows (NAGY) disease has sometimes been attributed to infection of Vitis vinifera L. by Prunus X-disease phytoplasma (‘Candidatus Phytoplasma pruni’) but this attribution may not be fully adequate. In this study, phytoplasma strains related to ‘Ca. Phytoplasma pruni’ were found in NAGY-diseased grapevines in Maryland, Pennsylvania, Virginia, Ohio, Missouri, and New York State. Based on restriction fragment length polymorphism analysis of 16S ribosomal RNA gene (16S rDNA) sequences, the strains (termed NAGYIII strains) were classified in group 16SrIII (X-disease group) but they contained a recognition site for the restriction endonuclease MseI that is not present in the 16S rDNA of ‘Ca. Phytoplasma pruni’. The 16S rDNA of the strains differed by three or four nucleotides from that of ‘Ca. Phytoplasma pruni’, indicating that they belonged to two novel 16S rDNA sequevars, designated NAGYIIIα and NAGYIIIβ. Both sequevars differed from ‘Ca. Phytoplasma pruni’ by a single base in each of three regions corresponding to species-unique (signature) sequences described for ‘Ca. Phytoplasma pruni’. Phylogenetic analyses of 16S rRNA genes and SecY proteins, and single-nucleotide polymorphism analyses of secY and ribosomal protein genes, further distinguished the two grapevine sequevar lineages from one another and from ‘Ca. Phytoplasma pruni’. The NAGYIIIα and NAGYIIIβ sequevars also differed from ‘Ca. Phytoplasma pruni’ in regions of the folded SecY protein that are predicted to be near or exposed at the outer surface of the phytoplasma membrane. No evidence indicated that diseased grapevines contained any phytoplasma strain conforming to ‘Ca. Phytoplasma pruni’ sensu stricto. Because the NAGYIII sequevars have not been reported in X-disease, a question is raised as to whether NAGYIII and Prunus X-disease are caused by different phytoplasma genotypes.

‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes

Citation
Davis et al. (2013). International Journal of Systematic and Evolutionary Microbiology 63 (Pt_2)
Names (1)
Ca. Phytoplasma pruni
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
X-disease is one of the most serious diseases known in peach (Prunus persica). Based on RFLP analysis of 16S rRNA gene sequences, peach X-disease phytoplasma strains from eastern and western United States and eastern Canada were classified in 16S rRNA gene RFLP group 16SrIII, subgroup A. Phylogenetic analyses of 16S rRNA gene sequences revealed that the X-disease phytoplasma strains formed a distinct subclade within the phytoplasma clade, supporting the hypothesis that they represented a lineage distinct from those of previously described ‘Candidatus Phytoplasma ’ species. Nucleotide sequence alignments revealed that all studied X-disease phytoplasma strains shared less than 97.5 % 16S rRNA gene sequence similarity with previously described ‘Candidatus Phytoplasma ’ species. Based on unique properties of the DNA, we propose recognition of X-disease phytoplasma strain PX11CT1R as representative of a novel taxon, ‘Candidatus Phytoplasma pruni’. Results from nucleotide and phylogenetic analyses of secY and ribosomal protein (rp) gene sequences provided additional molecular markers of the ‘Ca. Phytoplasma pruni’ lineage. We propose that the term ‘Ca. Phytoplasma pruni’ be applied to phytoplasma strains whose 16S rRNA gene sequences contain the oligonucleotide sequences of unique regions that are designated in the formally published description of the taxon. Such strains include X-disease phytoplasma and - within the tolerance of a single base difference in one unique sequence - peach rosette, peach red suture, and little peach phytoplasmas. Although not employed for taxon delineation in this work, we further propose that secY, rp, and other genetic loci from the reference strain of a taxon, and where possible oligonucleotide sequences of unique regions of those genes that distinguish taxa within a given 16Sr group, be incorporated in emended descriptions and as part of future descriptions of ‘Candidatus Phytoplasma ’ taxa.

‘Candidatus Phytoplasma sudamericanum’, a novel taxon, and strain PassWB-Br4, a new subgroup 16SrIII-V phytoplasma, from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.)

Citation
Davis et al. (2012). International Journal of Systematic and Evolutionary Microbiology 62 (Pt_4)
Names (1)
Ca. Phytoplasma sudamericanum
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
Symptoms of abnormal proliferation of shoots resulting in formation of witches’-broom growths were observed on diseased plants of passion fruit (Passiflora edulis f. flavicarpa Deg.) in Brazil. RFLP analysis of 16S rRNA gene sequences amplified in PCRs containing template DNAs extracted from diseased plants collected in Bonito (Pernambuco) and Viçosa (Minas Gerais) Brazil, indicated that such symptoms were associated with infections by two mutually distinct phytoplasmas. One phytoplasma, PassWB-Br4 from Bonito, represents a new subgroup, 16SrIII-V, in the X-disease phytoplasma group (‘Candidatus Phytoplasma pruni’-related strains). The second phytoplasma, PassWB-Br3 from Viçosa, represents a previously undescribed subgroup in group 16SrVI. Phylogenetic analyses of 16S rRNA gene sequences were consistent with the hypothesis that strain PassWB-Br3 is distinct from previously described ‘Ca. Phytoplasma ’ species. Nucleotide sequence alignments revealed that strain PassWB-Br3 shared less than 97.5 % 16S rRNA gene sequence similarity with previously described ‘Ca. Phytoplasma ’ species. The unique properties of its DNA, in addition to natural host and geographical occurrence, support the recognition of strain PassWB-Br3 as a representative of a novel taxon, ‘Candidatus Phytoplasma sudamericanum’.