Zheng, Zheng


Publications (19)

Physiological variables influenced by “<i>Candidatus</i> Liberibacter asiaticus” infection in two citrus species

Citation
Wu et al. (2022). Plant Disease
Names
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is the bacterium associated with the citrus disease known as Huanglongbing (HLB). This study evaluated the influence of CLas infection on a number of key plant physiological variables concerning photosynthesis, cell integrity, reactive oxygen species scavengers’ activity, and osmoregulation of two different species of citrus (the pomelo Citrus maxima (Burm.) Merr. and the mandarin C. reticulata cv. Tankan), relative to their measured CLas infection load. Results indicated all measured physiological variables excepting soluble sugar were affected by increased CLas infection titers, wherein the variety C. maxima proved overall more resistant than C. reticulata. CLas infection was linked in both plants to decrease in chlorophyll concentration, cell membrane permeability and malondialdehyde, as well as increased free proline and starch contents. Chlorophyll fluorescence measurements taken 9 months after grafting the mandarin C. reticulata with CLas scions revealed a significant decrease in the photosynthesis variables Fv/Fm, Y(II) and QL, whilst NPQ increased significantly; C. maxima plants, on the other hand, did not show significant differences until the 12th month from infection exposure. The variables SOD, CAT, POD, and soluble protein initially increased and later decreased. In addition, progression of CLas replication in both citrus species was accompanied by rapid changes in three reactive oxygen species scavenging enzymes in C. maxima, while the pattern was different in C. reticulata. We hypothesize the observed interspecific differences in physiological change are related to their relative resistance against CLas infection. These results provide a scaffold for better describing the pathogenesis, selecting the most resistant breeds, or even validating pertaining omics research: ultimately these detailed observations can facilitate the diagnosis of CLas infection.

Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in “Candidatus Liberibacter asiaticus”

Citation
Wang et al. (2022). International Journal of Molecular Sciences 23 (17)
Names
Ca. Liberibacter asiaticus
Subjects
Catalysis Computer Science Applications General Medicine Inorganic Chemistry Molecular Biology Organic Chemistry Physical and Theoretical Chemistry Spectroscopy
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is the causal agent of citrus Huanglongbing (HLB, also called citrus greening disease), a highly destructive disease threatening citrus production worldwide. A novel Microviridae phage (named CLasMV1) has been found to infect CLas, providing a potential therapeutic strategy for CLas/HLB control. However, little is known about the CLasMV1 biology. In this study, we analyzed the population dynamics of CLasMV1 between the insect vector of CLas, the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) and the holoparasitic dodder plant (Cuscuta campestris Yunck.); both acquired CLasMV1-infected CLas from an HLB citrus. All CLas-positive dodder samples were CLasMV1-positive, whereas only 32% of CLas-positive ACP samples were identified as CLasMV1-positive. Quantitative analyses showed a similar distribution pattern of CLasMV1 phage and CLas among eight citrus cultivars by presenting at highest abundance in the fruit pith and/or the center axis of the fruit. Transcriptome analyses revealed the possible lytic activity of CLasMV1 on CLas in fruit pith as evidenced by high-level expressions of CLasMV1 genes, and CLas genes related to cell wall biogenesis and remodeling to maintain the CLas cell envelope integrity. The up-regulation of CLas genes were involved in restriction–modification system that could involve possible phage resistance for CLas during CLasMV1 infection. In addition, the regulation of CLas genes involved in cell surface components and Sec pathway by CLasMV1 phage could be beneficial for phage infection. This study expanded our knowledge of CLasMV1 phage that will benefit further CLas phage research and HLB control.

Investigation of Citrus HLB Symptom Variations Associated with “Candidatus Liberibacter asiaticus” Strains Harboring Different Phages in Southern China

Citation
Bao et al. (2021). Agronomy 11 (11)
Names
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science
Abstract
Huanglongbing (HLB) is a devastating disease affecting citrus production worldwide. In China, the disease is associated with an unculturable alpha-proteobacterium, “Candidatus Liberibacter asiaticus” (CLas). Phages/prophages of CLas have recently been identified through intensive genomic research. The phage information has facilitated research on CLas biology such as population diversity and virulence gene identification. However, little is known about the roles of CLas phages in HLB symptom development. Such research is challenging due to the unculturable nature of CLas and the lack of laboratory strains that carry a single phage. In this study, CLas strains singly carrying Type 1 phage (Type 1 CLas) and Type 2 phage (Type 2 CLas) were identified and maintained in an experimental screenhouse in southern China. The strains were characterized through next-generation sequencing (NGS). Then, each CLas strain was inoculated into seedlings of three different citrus cultivars/species through graft transmission in a screenhouse in Guangdong, China. Symptom developments were recorded. All CLas-infected cultivars showed HLB symptoms in seven months. In cultivar Nianju (Citrus reticulata), Type 1 CLas caused pronounced yellowing symptoms and severe defoliation, whereas Type 2 CLas caused typical Zn-deficiency-like symptoms. In contrast, symptoms from the two CLas strains’ infections on cultivars Shatianyu (C. maxima), and Eureka lemon (Citrus limon) were more difficult to differentiate. Results from this study provide baseline information for future research to investigate the roles of CLas phages in HLB symptom development.

A Novel Microviridae Phage (CLasMV1) From “Candidatus Liberibacter asiaticus”

Citation
Zhang et al. (2021). Frontiers in Microbiology 12
Names
Ca. Liberibacter asiaticus
Subjects
Microbiology Microbiology (medical)
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is an unculturable phloem-limited α-proteobacterium associated with citrus Huanglongbing (HLB; yellow shoot disease). HLB is currently threatening citrus production worldwide. Understanding the CLas biology is critical for HLB management. In this study, a novel single-stranded DNA (ssDNA) phage, CLasMV1, was identified in a CLas strain GDHZ11 from Guangdong Province of China through a metagenomic analysis. The CLasMV1 phage had a circular genome of 8,869 bp with eight open reading frames (ORFs). While six ORFs remain uncharacterized, ORF6 encoded a replication initiation protein (RIP), and ORF8 encoded a major capsid protein (MCP). Based on BLASTp search against GenBank database, amino acid sequences of both MCP and RIP shared similarities (coverage &amp;gt; 50% and identity &amp;gt; 25%) to those of phages in Microviridae, an ssDNA phage family. Phylogenetic analysis revealed that CLasMV1 MCP and RIP sequences were clustered with genes from CLas and “Ca. L. solanacearum” (CLso) genomes and formed a unique phylogenetic lineage, designated as a new subfamily Libervirinae, distinct to other members in Microviridae family. No complete integration form but partial sequence (∼1.9 kb) of CLasMV1 was found in the chromosome of strain GDHZ11. Read-mapping analyses on additional 15 HiSeq data sets of CLas strains showed that eight strains harbored complete CLasMV1 sequence with variations in single-nucleotide polymorphisms (SNPs) and small sequence insertions/deletions (In/Dels). PCR tests using CLasMV1-specific primer sets detected CLasMV1 in 577 out of 1,006 CLas strains (57%) from southern China. This is the first report of Microviridae phage associated with CLas, which expands our understanding of phage diversity in CLas and facilitates current research in HLB.

Bacteriomic Analyses of Asian Citrus Psyllid and Citrus Samples Infected With “Candidatus Liberibacter asiaticus” in Southern California and Huanglongbing Management Implications

Citation
Huang et al. (2021). Frontiers in Microbiology 12
Names
Ca. Profftella armatura Ca. Liberibacter asiaticus Ca. Carsonella ruddii
Subjects
Microbiology Microbiology (medical)
Abstract
Citrus Huanglongbing (HLB; yellow shoot disease) is associated with an unculturable α-proteobacterium “Candidatus Liberibacter asiaticus” (CLas). HLB was found in southern California in 2012, and the current management strategy is based on suppression of the Asian citrus psyllid (Diaphorina citri) that transmits CLas and removal of confirmed CLas-positive trees. Little is known about Asian citrus psyllid-associated bacteria and citrus-associated bacteria in the HLB system. Such information is important in HLB management, particularly for accurate detection of CLas. Recent advancements in next-generation sequencing technology provide new opportunities to study HLB through genomic DNA sequence analyses (metagenomics). In this study, HLB-related bacteria in Asian citrus psyllid and citrus (represented by leaf midrib tissues) samples from southern California were analyzed. A metagenomic pipeline was developed to serve as a prototype for future bacteriomic research. This pipeline included steps of next-generation sequencing in Illumina platform, de novo assembly of Illumina reads, sequence classification using the Kaiju tool, acquisition of bacterial draft genome sequences, and taxonomic validation and diversity evaluation using average nucleotide identity. The identified bacteria in Asian citrus psyllids and citrus together included Bradyrhizobium, Buchnera, Burkholderia, “Candidatus Profftella armature,” “Candidatus Carsonella ruddii,” CLas, Mesorhizobium, Paraburkholderia, Pseudomonas, and Wolbachia. The whole genome of a CLas strain recently found in San Bernardino County was sequenced and classified into prophage typing group 1 (PTG-1), one of the five known CLas groups in California. Based on sequence similarity, Bradyrhizobium and Mesorhizobium were identified as possible source that could interfere with CLas detection using the 16S rRNA gene-based PCR commonly used for HLB diagnosis, particularly at low or zero CLas titer situation.

A Significantly High Abundance of “Candidatus Liberibacter asiaticus” in Citrus Fruit Pith: in planta Transcriptome and Anatomical Analyses

Citation
Fang et al. (2021). Frontiers in Microbiology 12
Names
Ca. Liberibacter asiaticus
Subjects
Microbiology Microbiology (medical)
Abstract
Huanglongbing, a highly destructive disease of citrus, is associated with the non-culturable phloem-limited α-proteobacterium “Candidatus Liberibacter asiaticus” (CLas). The distribution patterns of CLas in infected plant are variable and not consistent, which make the CLas detection and characterization more challenging. Here, we performed a systemic analysis of CLas distribution in citrus branches and fruits of 14 cultivars. A significantly high concentration of CLas was detected in fruit pith (dorsal vascular bundle) of 14 citrus cultivars collected at fruit maturity season. A 2-year monitoring assay of CLas population in citrus branches of “Shatangju” mandarin (Citrus reticulata Blanco “Shatangju”) revealed that CLas population already exhibited a high level even before the appearance of visual symptoms in the fruit rind. Quantitative analyses of CLas in serial 1.5-cm segments of fruit piths showed the CLas was unevenly distributed within fruit pith and tended to colonize in the middle or distal (stylar end) regions of pith. The use of CLas-abundant fruit pith for dual RNA-seq generated higher-resolution CLas transcriptome data compared with the leaf samples. CLas genes involved in transport system, flagellar assembly, lipopolysaccharide biosynthesis, virulence, stress response, and cell surface structure, as well as host genes involved in biosynthesis of antimicrobial-associated secondary metabolites, was up-regulated in leaf midribs compared with fruit pith. In addition, CLas infection caused the severe collapse in phloem and callose deposition in the plasmodesmata of fruit pith. The ability of fruit pith to support multiplication of CLas to high levels makes it an ideal host tissue for morphological studies and in planta transcriptome analyses of CLas–host interactions.

Genome Sequence Resource of ‘Candidatus Liberibacter asiaticus’ Strain Myan16 from Myanmar

Citation
Zheng et al. (2021). Plant Disease 105 (4)
Names
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter asiaticus,’ an uncultured α-proteobacterium, is associated with citrus huanglongbing (HLB, yellow shoot disease), a destructive disease threatening citrus production worldwide. Here, we reported the draft genome sequence of ‘Ca. L. asiaticus’ strain Myan16 from an HLB-affected lime tree in Myitkyina, Kachin State, Myanmar. The strain Myan16 genome is 1,229,102 bp with an average G+C content of 36.4%, along with a circular prophage: P-Myan16-2 (36,303 bp, type 2). This is the first genome sequence of a ‘Ca. L. asiaticus’ strain from Myanmar, which will enrich the current ‘Ca. L. asiaticus’ genome sequence database and facilitate HLB epidemiology research in Asia and world.

Genome Sequence Resource of ‘Candidatus Liberibacter asiaticus’ strain 9PA From Brazil

Citation
Silva et al. (2021). Plant Disease 105 (1)
Names
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter asiaticus’, an unculturable α-proteobacterium, is associated with citrus huanglongbing (HLB), a devastating disease threatening citrus production in Brazil and worldwide. In this study, a draft whole-genome sequence of ‘Ca. L. asiaticus’ strain 9PA from a sweet orange (cultivar Pera) tree collected in São Paulo State, Brazil, is reported. The 9PA genome is 1,231,881 bp, including two prophages, with G+C content of 36.7%. This is the first report of a whole-genome sequence of ‘Ca. L. asiaticus’ from Brazil or South America. The 9PA genome sequence will enrich ‘Ca. L. asiaticus’ genome resources and facilitate HLB research and control in Brazil and the world.