Louzada, Eliezer S.


Publications (4)

A Field Deployable Real-Time Loop-Mediated Isothermal Amplification Targeting Five Copy nrdB Gene for the Detection of ‘Candidatus Liberibacter asiaticus’ in Citrus

Citation
Danda et al. (2023). The Plant Pathology Journal 39 (4)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science
Abstract
Huanglongbing (HLB) is one of the most destructive diseases in citrus, which imperils the sustainability of citriculture worldwide. The presumed causal agent of HLB, ‘<i>Candidatus</i> Liberibacter asiaticus’ (CLas) is a non-culturable phloem-limited α-proteobacterium transmitted by Asian citrus psyllids (ACP, <i>Diaphorina citri</i> Kuwayama). A widely adopted method for HLB diagnosis is based on quantitative real-time polymerase chain reaction (qPCR). Although HLB diagnostic qPCR provides high sensitivity and good reproducibility, it is limited by time-consuming DNA preparation from plant tissue or ACP and the requirement of proper lab instruments including a thermal cycler to conduct qPCR. In an attempt to develop a quick assay that can be deployed in the field for CLas detection, we developed a real-time loop-mediated isothermal amplification (rt-LAMP) assay by targeting the CLas five copy <i>nrd</i>B gene. The rt-LAMP assay using various plant sample types and psyllids successfully detected the <i>nrd</i>B target as low as ~2.6 Log<sub>10</sub> copies. Although the rt-LAMP assay was less sensitive than laboratory-based qPCR (detection limit ~10 copies), the data obtained with citrus leaf and bark and ACP showed that the rt-LAMP assay has >96% CLas detection rate, compared to that of laboratory-based qPCR. However, the CLas detection rate in fibrous roots was significantly decreased compared to qPCR due to low CLas titer in some root DNA sample. We also demonstrated that the rt-LAMP assay can be used with a crude leaf DNA extract which is fully deployable in the field for quick and reliable HLB screening.

Root samples provide early and improved detection of Candidatus Liberibacter asiaticus in Citrus

Citation
Braswell et al. (2020). Scientific Reports 10 (1)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Multidisciplinary
Abstract
AbstractHuanglongbing (HLB), or Citrus Greening, is one of the most devastating diseases affecting agriculture today. Widespread throughout Citrus growing regions of the world, it has had severe economic consequences in all areas it has invaded. With no treatment available, management strategies focus on suppression and containment. Effective use of these costly control strategies relies on rapid and accurate identification of infected plants. Unfortunately, symptoms of the disease are slow to develop and indistinct from symptoms of other biotic/abiotic stressors. As a result, diagnosticians have focused on detecting the pathogen, Candidatus Liberibacter asiaticus, by DNA-based detection strategies utilizing leaf midribs for sampling. Recent work has shown that fibrous root decline occurs in HLB-affected trees before symptom development among leaves. Moreover, the pathogen, Ca. Liberibacter asiaticus, has been shown to be more evenly distributed within roots than within the canopy. Motivated by these observations, a longitudinal study of young asymptomatic trees was established to observe the spread of disease through time and test the relative effectiveness of leaf- and root-based detection strategies. Detection of the pathogen occurred earlier, more consistently, and more often in root samples than in leaf samples. Moreover, little influence of geography or host variety was found on the probability of detection.

Distribution of ‘Candidatus Liberibacter asiaticus’ Above and Below Ground in Texas Citrus

Citation
Louzada et al. (2016). Phytopathology® 106 (7)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
Detection of ‘Candidatus Liberibacter asiaticus’ represents one of the most difficult, yet critical, steps of controlling Huanglongbing disease. Efficient detection relies on understanding the underlying distribution of bacteria within trees. To that end, we studied the distribution of ‘Ca. L. asiaticus’ in leaves of ‘Rio Red’ grapefruit trees and in roots of ‘Valencia’ sweet orange trees grafted onto sour orange rootstock. We performed two sets of leaf collection on grapefruit trees; the first a selective sampling targeting symptomatic leaves and their neighbors and the second a systematic collection disregarding symptomology. From uprooted orange trees, we exhaustively sampled fibrous roots. In this study, the presence of ‘Ca. L. asiaticus’ was detected in leaves using real-time polymerase chain reaction (PCR) targeting the 16S ribosomal gene and in roots using the rpIJ/rpIL ribosomal protein genes and was confirmed with conventional PCR and sequencing of the rpIJ/rpIL gene in both tissues. Among randomly collected leaves, ‘Ca. L. asiaticus’ was distributed in a patchy fashion. Detection of ‘Ca. L. asiaticus’ varied with leaf symptomology with symptomatic leaves showing the highest frequency (74%) followed by their neighboring asymptomatic leaves (30%), while randomly distributed asymptomatic leaves had the lowest frequency (20%). Among symptomatic leaves, we found statistically significant differences in mean number of bacterial cells with respect to both increasing distance of the leaf from the trunk and cardinal direction. The titer of ‘Ca. L. asiaticus’ cells was significantly greater on the north side of trees than on the south and west sides. Moreover, these directions showed different spatial distributions of ‘Ca. L. asiaticus’ with higher titers near the trunk on the south and west sides as opposed to further from the trunk on the north side. Similarly, we found spatial variation in ‘Ca. L. asiaticus’ distribution among root samples. ‘Ca. L. asiaticus’ was detected more frequently and bacterial abundances were higher among horizontally growing roots just under the soil surface (96%) than among deeper vertically growing roots (78%). Bacterial abundance declined slightly with distance from the trunk. These results point to paths of research that will likely prove useful to combating this devastating disease.

Quantitative Distribution of Candidatus Liberibacter asiaticus in the Aerial Parts of the Huanglongbing-infected Citrus Trees in Texas

Citation
Kunta et al. (2014). HortScience 49 (1)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Horticulture
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama, one of the known vectors for citrus greening disease or Huanglongbing (HLB) pathogens, has been present in Texas for over a decade, but the detection of the disease is recent. HLB has been confirmed in only two adjacent commercial citrus groves of grapefruit and sweet orange. A study was conducted to compare the population of Candidatus Liberibacter asiaticus (CLas) cells in different plant parts including peduncle, columella, leaves, seeds, young shoots, flower buds, flowers, and bark of 6-year-old known infected grapefruit and sweet orange trees. The bacterial population was estimated using a previously described grand universal regression equation Y = 13.82 – 0.2866X, where Y is the log of the target copy number and X is the Ct (threshold cycle) of the assay. Except for bark tissue, there was no significant difference in the concentration of CLas cells in other plant parts between the two cultivars. Within the cultivar, the bacterial concentration also varied with the plant part, with peduncle, columella, midrib having significantly higher titer of CLas compared with other plant parts. The obtained results here are in agreement with previous studies conducted on Florida samples, but the consistently lowest bacterial titer recorded in young shoots, leaf blade, and especially leaf margins relative to the midrib has never been previously reported.