Phosphatidylcholine (PtdCho) is an unusual membrane phospholipid present in some endosymbiotic and intracellular pathogenic prokaryotes. ‘Candidatus Liberibacter asiaticus’ (CLas) is a phloem-limited, uncultured, fastidious α-Proteobacterium associated with the devastating citrus “greening” disease (Huanglongbing). Phylogenetically related but nonpathogenic L. crescens (Lcr) was used as a culturable surrogate to examine PtdCho biosynthesis in pathogenic CLas. Genes encoding key enzymes for two alternative PtdCho biosynthetic routes are present in the Lcr genome, viz. the one-step CDP-choline (pcs-encoding phosphatidylcholine synthase) and the three-step methyl-transferase pathway (pmt-encoding phospholipid N-methyltransferase). However, only the CDP-choline pathway genes for incorporating exogenous Cho were identified in the CLas genome. Exogenous Cho enhanced growth and alleviated osmotic stress in wild-type Lcr and in the pmt insertion mutant strains when cultured in sugar-rich medium. Quantitative RT-PCR analyses confirmed active uptake and condensation of nutritional Cho into PtdCho by CLas in both its plant host and psyllid vector. CLas-infected grapefruit leaves showed transcriptional activation of Cho biosynthesis genes and 2.8-fold higher levels of Cho. In plant cells, the compatible osmolyte glycine-betaine (GlyBet) is also derived from Cho. Expression of GlyBet biosynthesis genes and the GlyBet content was similar in both CLas-infected and healthy leaf tissue. The data presented here suggest that CLas likely exploits the Cho biosynthetic pathway in citrus hosts to expand the nutritional Cho pool.
Abstract
Objective
‘Candidatus Liberibacter asiaticus’ (CLas) is associated with the devastating citrus ‘greening’ disease. All attempts to achieve axenic growth and complete Koch’s postulates with CLas have failed to date, at best yielding complex cocultures with very low CLas titers detectable only by PCR. Reductive genome evolution has rendered all pathogenic ‘Ca. Liberibacter’ spp. deficient in multiple key biosynthetic, metabolic and structural pathways that are highly unlikely to be rescued in vitro by media supplementation alone. By contrast, Liberibacter crescens (Lcr) is axenically cultured and its genome is both syntenic and highly similar to CLas. Our objective is to achieve replicative axenic growth of CLas via addition of missing culturability-related Lcr genes.
Results
Bioinformatic analyses identified 405 unique ORFs in Lcr but missing (or truncated) in all 24 sequenced CLas strains. Site-directed mutagenesis confirmed and extended published EZ-Tn5 mutagenesis data, allowing elimination of 310 of these 405 genes as nonessential, leaving 95 experimentally validated Lcr genes as essential for CLas growth in axenic culture. Experimental conditions for conjugation of large GFP-expressing plasmids from Escherichia coli to Lcr were successfully established for the first time, providing a practical method for transfer of large groups of ‘essential’ Lcr genes to CLas.
Huanglongbing (HLB) disease, also known as citrus greening disease, was first reported in the US in 2005. Since then, the disease has decimated the citrus industry in Florida, resulting in billions of dollars in crop losses and the destruction of thousands of acres of citrus groves. The causative agent of citrus greening disease is the phloem limited pathogen Candidatus Liberibacter asiaticus. As it has not been cultured, very little is known about the structural biology of the organism. Liberibacter are part of the Rhizobiaceae family, which includes nitrogen-fixing symbionts of legumes as well as the Agrobacterium plant pathogens. To better understand the Liberibacter genus, a closely related culturable bacterium (Liberibacter crescens or Lcr) has attracted attention as a model organism for structural and functional genomics of Liberibacters. Given that the structure of lipopolysaccharides (LPS) from Gram-negative bacteria plays a crucial role in mediating host-pathogen interactions, we sought to characterize the LPS from Lcr. We found that the major lipid A component of the LPS consisted of a pentaacylated molecule with a β-6-GlcN disaccharide backbone lacking phosphate. The polysaccharide portion of the LPS was unusual compared to previously described members of the Rhizobiaceae family in that it contained ribofuranosyl residues. The LPS structure presented here allows us to extrapolate known LPS structure/function relationships to members of the Liberibacter genus which cannot yet be cultured. It also offers insights into the biology of the organism and how they manage to effectively attack citrus trees.
Liberibacter crescens
is a bacterium that is closely related to plant pathogens that have caused billions of dollars in crop losses in recent years. Particularly devastating are citrus losses due to citrus greening disease, also known as Huanglongbing, which is caused by “
Candidatus
Liberibacter asiaticus” and carried by the Asian citrus psyllid.
L. crescens
is the only close relative of “
Ca
. Liberibacter asiaticus” that can currently be grown in culture, and it therefore serves as an important model organism for the growth, genetic manipulation, and biological control of the pathogenic species. Here, we show that one of the greatest limitations to
L. crescens
growth is the sharp increase in alkaline conditions it produces as a consequence of consumption of its preferred nutrient source. In addition to new information about
L. crescens
growth and metabolism, we provide new guidelines for culture conditions that improve the survival and yield of
L. crescens
.
In recent decades, ‘Candidatus Liberibacter spp.’ have emerged as a versatile group of psyllid-vectored plant pathogens and endophytes capable of infecting a wide range of economically important plant hosts. The most notable example is ‘Candidatus Liberibacter asiaticus’ (CLas) associated with Huanglongbing (HLB) in several major citrus-producing areas of the world. CLas is a phloem-limited α-proteobacterium that is primarily vectored and transmitted among citrus species by the Asian citrus psyllid (ACP) Diaphorina citri. HLB was first detected in North America in Florida (USA) in 2005, following introduction of the ACP to the State in 1998. HLB rapidly spread to all citrus growing regions of Florida within three years, with severe economic consequences to growers and considerable expense to taxpayers of the state and nation. Inability to establish CLas in culture (except transiently) remains a significant scientific challenge toward effective HLB management. Lack of axenic cultures has restricted functional genomic analyses, transfer of CLas to either insect or plant hosts for fulfillment of Koch’s postulates, characterization of host-pathogen interactions and effective screening of antibacterial compounds. In the last decade, substantial progress has been made toward CLas culturing: (i) three reports of transient CLas cultures were published, (ii) a new species of Liberibacter was identified and axenically cultured from diseased mountain papaya (Liberibacter crescens strain BT-1), (iii) psyllid hemolymph and citrus phloem sap were biochemically characterized, (iv) CLas phages were identified and lytic genes possibly affecting CLas growth were described, and (v) genomic sequences of 15 CLas strains were made available. In addition, development of L. crescens as a surrogate host for functional analyses of CLas genes, has provided valuable insights into CLas pathogenesis and its physiological dependence on the host cell. In this review we summarize the conclusions from these important studies.
The oxidative (H2O2) burst is a seminal feature of the basal plant defense response to attempted pathogen invasions. In ‘Candidatus Liberibacter asiaticus’ UF506, expression of the SC2 prophage-encoded secreted peroxidase (F489_gp15) increases bacterial fitness and delays symptom progression in citrus. Two chromosomal 1-Cys peroxiredoxin genes, CLIBASIA_RS00940 (Lasprx5) and CLIBASIA_RS00445 (Lasbcp), are conserved among all sequenced ‘Ca. L. asiaticus’ strains, including those lacking prophages. Both LasBCP and LasdPrx5 have only a single conserved peroxidatic Cys (CP/SH) and lack the resolving Cys (CR/SH). Lasprx5 appeared to be a housekeeping gene with similar moderate transcript abundance in both ‘Ca. L. asiaticus’–infected psyllids and citrus. By contrast, Lasbcp was expressed only in planta, similar to the expression of the SC2 peroxidase. Since ‘Ca. L. asiaticus’ is uncultured, Lasbcp and Lasprx5 were functionally validated in a cultured surrogate species, Liberibacter crescens, and both genes significantly increased oxidative stress tolerance and cell viability in culture. LasBCP was nonclassically secreted and, in L. crescens, conferred 214-fold more resistance to tert-butyl hydroperoxide (tBOOH) than wild type. Transient overexpression of Lasbcp in tobacco suppressed H2O2-mediated transcriptional activation of RbohB, the key gatekeeper of the systemic plant defense signaling cascade. Lasbcp expression did not interfere with the perception of ‘Ca. L. asiaticus’ flagellin (flg22Las) but interrupted the downstream activation of RbohB and stereotypical deposition of callose in tobacco. Critically, LasBCP also protected against tBOOH-induced peroxidative degradation of lipid membranes in planta, preventing subsequent accumulation of antimicrobial oxylipins that can also trigger the localized hypersensitive cell death response.
ABSTRACT
Methylglyoxal (MG) is a cytotoxic, nonenzymatic by-product of glycolysis that readily glycates proteins and DNA, resulting in carbonyl stress. Glyoxalase I and II (GloA and GloB) sequentially convert MG into
d
-lactic acid using glutathione (GSH) as a cofactor. The glyoxalase system is essential for the mitigation of MG-induced carbonyl stress, preventing subsequent cell death, and recycling GSH for maintenance of cellular redox poise. All pathogenic liberibacters identified to date are uncultured, including “
Candidatus
Liberibacter asiaticus,” a psyllid endosymbiont and causal agent of the severely damaging citrus disease “huanglongbing.”
In silico
analysis revealed the absence of
gloA
in “
Ca
. Liberibacter asiaticus” and all other pathogenic liberibacters. Both
gloA
and
gloB
are present in
Liberibacter crescens
, the only liberibacter that has been cultured.
L. crescens
GloA was functional in a heterologous host. Marker interruption of
gloA
in
L. crescens
appeared to be lethal. Key glycolytic enzymes were either missing or significantly downregulated in “
Ca
. Liberibacter asiaticus” compared to (cultured)
L. crescens
. Marker interruption of
sut
, a sucrose transporter gene in
L. crescens
, decreased its ability to take up exogenously supplied sucrose in culture. “
Ca
. Liberibacter asiaticus” lacks a homologous sugar transporter but has a functional ATP/ADP translocase, enabling it to thrive both in psyllids and in the sugar-rich citrus phloem by (i) avoiding sucrose uptake, (ii) avoiding MG generation via glycolysis, and (iii) directly importing ATP from the host cell. MG detoxification enzymes appear to be predictive of “
Candidatus
” status for many uncultured pathogenic and environmental bacteria.
IMPORTANCE
Discovered more than 100 years ago, the glyoxalase system is thought to be present across all domains of life and fundamental to cellular growth and viability. The glyoxalase system protects against carbonyl stress caused by methylglyoxal (MG), a highly reactive, mutagenic and cytotoxic compound that is nonenzymatically formed as a by-product of glycolysis. The uncultured alphaproteobacterium “
Ca
. Liberibacter asiaticus” is a well-adapted endosymbiont of the Asian citrus psyllid, which transmits the severely damaging citrus disease “huanglongbing.” “
Ca
. Liberibacter asiaticus” lacks a functional glyoxalase pathway. We report here that the bacterium is able to thrive both in psyllids and in the sugar-rich citrus phloem by (i) avoiding sucrose uptake, (ii) avoiding (significant) MG generation via glycolysis, and (iii) directly importing ATP from the host cell. We hypothesize that failure to culture “
Ca
. Liberibacter asiaticus” is at least partly due to its dependence on host cells for both ATP and MG detoxification.