Stelinski, Lukasz L


Publications
6

Inoculation of Tomato With Plant Growth Promoting Rhizobacteria Affects the Tomato—Potato Psyllid—Candidatus Liberibacter Solanacearum Interactions

Citation
de Leon et al. (2023). Journal of Economic Entomology 116 (2)
Names
“Liberibacter solanacearum” Liberibacter
Abstract
Abstract The Rio Grande Valley (RGV) in southern Texas is well-suited for vegetable production due to its relatively mild/warm weather conditions in the fall and winter. Consequently, insects inflict year-round, persistent damage to crops in the RGV and regions with similar climate. Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), commonly known as the potato psyllid, is a known vector of Candidatus Liberibacter solanacearum (CLso) (Hyphomicrobiales: Rhizobiaceae), a fastidio

Foliar Antibiotic Treatment Reduces Candidatus Liberibacter asiaticus Acquisition by the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae), but Does not Reduce Tree Infection Rate

Citation
Roldán et al. (2023). Journal of Economic Entomology 116 (1)
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Huanglongbing (HLB), or citrus greening, is the most destructive disease of cultivated citrus worldwide. Candidatus Liberibacter asiaticus (CLas), the putative causal agent of HLB, is transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). In Florida, D. citri was first reported in 1998, and CLas was confirmed in 2005. Management of HLB relies on the use of insecticides to reduce vector populations. In 2016, antibiotics were approved to m

Temporal Dynamics of Candidatus Liberibacter asiaticus Titer in Mature Leaves from Citrus sinensis cv Valencia Are Associated with Vegetative Growth

Citation
Ibanez, Stelinski (2019). Journal of Economic Entomology 113 (2)
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
Abstract Huanglongbing, a highly destructive disease of citrus species, is associated with a fastidious, gram-negative, phloem-limited bacteria (Candidatus Liberibacter spp.). In Florida, the causative agent of Huanglongbing (HLB) is C. Liberibacter asiaticus (CLas) and it is transmitted by the insect vector, Asian citrus psyllid (Diaphorina citri Kuwayama). Previous investigations have revealed systemic infection of CLas with an erratic and uneven distribution of pathogen in tree

Glutathione Transferase and Cytochrome P450 (General Oxidase) Activity Levels in Candidatus Liberibacter Asiaticus-Infected and Uninfected Asian Citrus Psyllid (Hemiptera: Psyllidae)

Citation
Tiwari et al. (2011). Annals of the Entomological Society of America 104 (2)
Names
Liberibacter
Abstract
Abstract Candidatus Liberibacter asiaticus (Las) has been reported to increase the susceptibility of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), to selected insecticides. Reduced general esterase activity in Las-infected, compared with uninfected, D. citri has been proposed as a possible explanation for this difference in insecticide susceptibility. The current study was conducted to quantify glutathione transferase (GST) and cytochrome P450 (genera