Lee, Ing-Ming


Publications (12)

The agent associated with blue dwarf disease in wheat represents a new phytoplasma taxon, ‘Candidatus Phytoplasma tritici’

Citation
Zhao et al. (2021). International Journal of Systematic and Evolutionary Microbiology 71 (1)
Names (2)
Ca. Phytoplasma tritici Ca. Phytoplasma asteris
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
Wheat blue dwarf (WBD) is one of the most economically damaging cereal crop diseases in northwestern PR China. The agent associated with the WBD disease is a phytoplasma affiliated with the aster yellows (AY) group, subgroup C (16SrI-C). Since phytoplasma strains within the AY group are ecologically and genetically diverse, it has been conceived that the AY phytoplasma group may consist of more than one species. This communication presents evidence to demonstrate that, while each of the two 16 rRNA genes of the WBD phytoplasma shares >97.5 % sequence similarity with that of the ‘Candidatus Phytoplasma asteris’ reference strain, the WBD phytoplasma clearly represents an ecologically separated lineage: the WBD phytoplasma not only has its unique transmitting vector (Psammotettix striatus) but also elicits a distinctive symptom in its predominant plant host (wheat). In addition, the WBD phytoplasma possesses molecular characteristics that further manifest its significant divergence from ‘Ca. P. asteris’. Such molecular characteristics include lineage-specific antigenic membrane proteins and a lower than 95 % genome-wide average nucleotide identity score with ‘Ca. P. asteris’. These ecological, molecular and genomic evidences justify the recognition of the WBD phytoplasma as a novel taxon, ‘Candidatus Phytoplasma tritici’.

Unraveling the Etiology of North American Grapevine Yellows (NAGY): Novel NAGY Phytoplasma Sequevars Related to ‘Candidatus Phytoplasma pruni’

Citation
Davis et al. (2015). Plant Disease 99 (8)
Names (1)
Ca. Phytoplasma pruni
Subjects
Agronomy and Crop Science Plant Science
Abstract
North American grapevine yellows (NAGY) disease has sometimes been attributed to infection of Vitis vinifera L. by Prunus X-disease phytoplasma (‘Candidatus Phytoplasma pruni’) but this attribution may not be fully adequate. In this study, phytoplasma strains related to ‘Ca. Phytoplasma pruni’ were found in NAGY-diseased grapevines in Maryland, Pennsylvania, Virginia, Ohio, Missouri, and New York State. Based on restriction fragment length polymorphism analysis of 16S ribosomal RNA gene (16S rDNA) sequences, the strains (termed NAGYIII strains) were classified in group 16SrIII (X-disease group) but they contained a recognition site for the restriction endonuclease MseI that is not present in the 16S rDNA of ‘Ca. Phytoplasma pruni’. The 16S rDNA of the strains differed by three or four nucleotides from that of ‘Ca. Phytoplasma pruni’, indicating that they belonged to two novel 16S rDNA sequevars, designated NAGYIIIα and NAGYIIIβ. Both sequevars differed from ‘Ca. Phytoplasma pruni’ by a single base in each of three regions corresponding to species-unique (signature) sequences described for ‘Ca. Phytoplasma pruni’. Phylogenetic analyses of 16S rRNA genes and SecY proteins, and single-nucleotide polymorphism analyses of secY and ribosomal protein genes, further distinguished the two grapevine sequevar lineages from one another and from ‘Ca. Phytoplasma pruni’. The NAGYIIIα and NAGYIIIβ sequevars also differed from ‘Ca. Phytoplasma pruni’ in regions of the folded SecY protein that are predicted to be near or exposed at the outer surface of the phytoplasma membrane. No evidence indicated that diseased grapevines contained any phytoplasma strain conforming to ‘Ca. Phytoplasma pruni’ sensu stricto. Because the NAGYIII sequevars have not been reported in X-disease, a question is raised as to whether NAGYIII and Prunus X-disease are caused by different phytoplasma genotypes.

Should ‘Candidatus Phytoplasma’ be retained within the order Acholeplasmatales?

Citation
Zhao et al. (2015). International Journal of Systematic and Evolutionary Microbiology 65 (Pt_3)
Names (1)
Ca. Phytoplasma
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
Phytoplasmas are a diverse but phylogenetically coherent group of cell-wall-less bacteria affiliated with the class Mollicutes . Due to difficulties in establishing axenic culture, phytoplasmas were assigned to a provisional genus, ‘Candidatus Phytoplasma’, and the genus was embraced within the order Acholeplasmatales . However, phytoplasmas differ significantly from species of the genus Acholeplasma in their habitat specificities, modes of life, metabolic capabilities, genomic architectures, and phylogenetic positions. This communication describes the unique ecological, nutritional, biochemical, genomic and phylogenetic properties that distinguish phytoplasmas from species of the genus Acholeplasma and all other taxa in the class Mollicutes . Since such distinguishing properties of the phytoplasmas are not referable to the descriptions of the order Acholeplasmatales and of all other existing orders, namely Mycoplasmatales , Entomoplasmatales and Anaeroplasmatales , this communication raises the question of whether ‘ Candidatus Phytoplasma ’ should be retained in the order Acholeplasmatales or whether a novel provisional order and family should be created to accommodate the genus ‘ Ca. Phytoplasma ’.

‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes

Citation
Davis et al. (2013). International Journal of Systematic and Evolutionary Microbiology 63 (Pt_2)
Names (1)
Ca. Phytoplasma pruni
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
X-disease is one of the most serious diseases known in peach (Prunus persica). Based on RFLP analysis of 16S rRNA gene sequences, peach X-disease phytoplasma strains from eastern and western United States and eastern Canada were classified in 16S rRNA gene RFLP group 16SrIII, subgroup A. Phylogenetic analyses of 16S rRNA gene sequences revealed that the X-disease phytoplasma strains formed a distinct subclade within the phytoplasma clade, supporting the hypothesis that they represented a lineage distinct from those of previously described ‘Candidatus Phytoplasma ’ species. Nucleotide sequence alignments revealed that all studied X-disease phytoplasma strains shared less than 97.5 % 16S rRNA gene sequence similarity with previously described ‘Candidatus Phytoplasma ’ species. Based on unique properties of the DNA, we propose recognition of X-disease phytoplasma strain PX11CT1R as representative of a novel taxon, ‘Candidatus Phytoplasma pruni’. Results from nucleotide and phylogenetic analyses of secY and ribosomal protein (rp) gene sequences provided additional molecular markers of the ‘Ca. Phytoplasma pruni’ lineage. We propose that the term ‘Ca. Phytoplasma pruni’ be applied to phytoplasma strains whose 16S rRNA gene sequences contain the oligonucleotide sequences of unique regions that are designated in the formally published description of the taxon. Such strains include X-disease phytoplasma and - within the tolerance of a single base difference in one unique sequence - peach rosette, peach red suture, and little peach phytoplasmas. Although not employed for taxon delineation in this work, we further propose that secY, rp, and other genetic loci from the reference strain of a taxon, and where possible oligonucleotide sequences of unique regions of those genes that distinguish taxa within a given 16Sr group, be incorporated in emended descriptions and as part of future descriptions of ‘Candidatus Phytoplasma ’ taxa.

‘Candidatus Phytoplasma sudamericanum’, a novel taxon, and strain PassWB-Br4, a new subgroup 16SrIII-V phytoplasma, from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.)

Citation
Davis et al. (2012). International Journal of Systematic and Evolutionary Microbiology 62 (Pt_4)
Names (1)
Ca. Phytoplasma sudamericanum
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
Symptoms of abnormal proliferation of shoots resulting in formation of witches’-broom growths were observed on diseased plants of passion fruit (Passiflora edulis f. flavicarpa Deg.) in Brazil. RFLP analysis of 16S rRNA gene sequences amplified in PCRs containing template DNAs extracted from diseased plants collected in Bonito (Pernambuco) and Viçosa (Minas Gerais) Brazil, indicated that such symptoms were associated with infections by two mutually distinct phytoplasmas. One phytoplasma, PassWB-Br4 from Bonito, represents a new subgroup, 16SrIII-V, in the X-disease phytoplasma group (‘Candidatus Phytoplasma pruni’-related strains). The second phytoplasma, PassWB-Br3 from Viçosa, represents a previously undescribed subgroup in group 16SrVI. Phylogenetic analyses of 16S rRNA gene sequences were consistent with the hypothesis that strain PassWB-Br3 is distinct from previously described ‘Ca. Phytoplasma ’ species. Nucleotide sequence alignments revealed that strain PassWB-Br3 shared less than 97.5 % 16S rRNA gene sequence similarity with previously described ‘Ca. Phytoplasma ’ species. The unique properties of its DNA, in addition to natural host and geographical occurrence, support the recognition of strain PassWB-Br3 as a representative of a novel taxon, ‘Candidatus Phytoplasma sudamericanum’.

‘Candidatus Phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex

Citation
Lee et al. (2006). International Journal of Systematic and Evolutionary Microbiology 56 (7)
Names (1)
Ca. Phytoplasma americanum
Subjects
Ecology, Evolution, Behavior and Systematics General Medicine Microbiology
Abstract
Potato purple top wilt (PPT) is a devastating disease that occurs in various regions of North America and Mexico. At least three distinct phytoplasma strains belonging to three different phytoplasma groups (16SrI, 16SrII and 16SrVI) have been associated with this disease. A new disease with symptoms similar to PPT was recently observed in Texas and Nebraska, USA. Two distinct phytoplasma strain clusters were identified. One belongs to the 16SrI phytoplasma group, subgroup A, and the other is a novel phytoplasma that is most closely related to, and shares 96.6 % 16S rRNA gene sequence similarity with, a member of group 16SrXII. Phylogenetic analysis of 16S rRNA gene sequences of the novel PPT-associated phytoplasma strains, previously described ‘Candidatus Phytoplasma’ organisms and other distinct unnamed phytoplasmas indicated that the novel phytoplasma, termed American potato purple top wilt (APPTW) phytoplasma, represents a distinct lineage and shares a common ancestor with stolbur phytoplasma, ‘Candidatus Phytoplasma australiense’, ‘Candidatus Phytoplasma japonicum’, ‘Candidatus Phytoplasma fragariae’, bindweed yellows phytoplasma (IBS), ‘Candidatus Phytoplasma caricae’ and ‘Candidatus Phytoplasma graminis’. On the basis of unique 16S rRNA gene sequences and biological properties, it is proposed that the APPTW phytoplasma represents ‘Candidatus Phytoplasma americanum’, with APPTW12-NE as the reference strain.