Oshiki, Mamoru


Publications (9)

Draft Genome Sequence of an Anaerobic Ammonium-Oxidizing Bacterium, “ Candidatus Brocadia sinica”

Citation
Oshiki et al. (2015). Genome Announcements 3 (2)
Names (1)
Ca. Brocadia sinica
Subjects
Genetics Molecular Biology
Abstract
ABSTRACT A draft genome sequence of an anaerobic ammonium-oxidizing (anammox) bacterium, “ Candidatus Brocadia sinica,” was determined by pyrosequencing and by screening a fosmid library. A 4.07-Mb genome sequence comprising 3 contigs was assembled, in which 3,912 gene-coding regions, 47 tRNAs, and a single rrn operon were annotated.

Physiological Characterization of an Anaerobic Ammonium-Oxidizing Bacterium Belonging to the “Candidatus Scalindua” Group

Citation
Awata et al. (2013). Applied and Environmental Microbiology 79 (13)
Names (1)
Ca. Scalindua
Subjects
Applied Microbiology and Biotechnology Biotechnology Ecology Food Science
Abstract
ABSTRACTThe phylogenetic affiliation and physiological characteristics (e.g.,Ksand maximum specific growth rate [μmax]) of an anaerobic ammonium oxidation (anammox) bacterium, “CandidatusScalindua sp.,” enriched from the marine sediment of Hiroshima Bay, Japan, were investigated. “CandidatusScalindua sp.” exhibits higher affinity for nitrite and a lower growth rate and yield than the known anammox species.

Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’

Citation
Oshiki et al. (2011). Microbiology 157 (6)
Names (1)
Ca. Brocadia sinica
Subjects
Microbiology
Abstract
The present study investigated the phylogenetic affiliation and physiological characteristics of bacteria responsible for anaerobic ammonium oxidization (anammox); these bacteria were enriched in an anammox reactor with a nitrogen removal rate of 26.0 kg N m−3day−1. The anammox bacteria were identified as representing ‘CandidatusBrocadia sinica’ on the basis of phylogenetic analysis of rRNA operon sequences. Physiological characteristics examined were growth rate, kinetics of ammonium oxidation and nitrite reduction, temperature, pH and inhibition of anammox. The maximum specific growth rate (μmax) was 0.0041 h−1, corresponding to a doubling time of 7 days. The half-saturation constants (Ks) for ammonium and nitrite of ‘Ca.B. sinica’ were 28±4 and 86±4 µM, respectively, higher than those of ‘CandidatusBrocadia anammoxidans’ and ‘CandidatusKuenenia stuttgartiensis’. The temperature and pH ranges of anammox activity were 25–45 °C and pH 6.5–8.8, respectively. Anammox activity was inhibited in the presence of nitrite (50 % inhibition at 16 mM), ethanol (91 % at 1 mM) and methanol (86 % at 1 mM). Anammox activities were 80 and 70 % of baseline in the presence of 20 mM phosphorus and 3 % salinity, respectively. The yield of biomass and dissolved organic carbon production in the culture supernatant were 0.062 and 0.005 mol C (molNH4+)−1, respectively. This study compared physiological differences between three anammox bacterial enrichment cultures to provide a better understanding of anammox niche specificity in natural and man-made ecosystems.