Jetten, Mike S. M.


Publications (19)

“Candidatus Hydrogenisulfobacillus filiaventi” strain R50 gen. nov. sp. nov., a highly efficient producer of extracellular organic compounds from H2 and CO2

Citation
Hogendoorn et al. (2023). Frontiers in Microbiology 14
Names (2)
Ca. Hydrogenisulfobacillus Ca. Hydrogenisulfobacillus filiaventi
Subjects
Microbiology Microbiology (medical)
Abstract
Production of organic molecules is largely depending on fossil fuels. A sustainable alternative would be the synthesis of these compounds from CO2 and a cheap energy source, such as H2, CH4, NH3, CO, sulfur compounds or iron(II). Volcanic and geothermal areas are rich in CO2 and reduced inorganic gasses and therefore habitats where novel chemolithoautotrophic microorganisms for the synthesis of organic compounds could be discovered. Here we describe “Candidatus Hydrogenisulfobacillus filiaventi” R50 gen. nov., sp. nov., a thermoacidophilic, autotrophic H2-oxidizing microorganism, that fixed CO2 and excreted no less than 0.54 mol organic carbon per mole fixed CO2. Extensive metabolomics and NMR analyses revealed that Val, Ala and Ile are the most dominant form of excreted organic carbon while the aromatic amino acids Tyr and Phe, and Glu and Lys were present at much lower concentrations. In addition to these proteinogenic amino acids, the excreted carbon consisted of homoserine lactone, homoserine and an unidentified amino acid. The biological role of the excretion remains uncertain. In the laboratory, we noticed the production under high growth rates (0.034 h−1, doubling time of 20 h) in combination with O2-limitation, which will most likely not occur in the natural habitat of this strain. Nevertheless, this large production of extracellular organic molecules from CO2 may open possibilities to use chemolithoautotrophic microorganisms for the sustainable production of important biomolecules.

Methane-Dependent Extracellular Electron Transfer at the Bioanode by the Anaerobic Archaeal Methanotroph “Candidatus Methanoperedens”

Citation
Ouboter et al. (2022). Frontiers in Microbiology 13
Names (1)
Ca. Methanoperedens
Subjects
Microbiology Microbiology (medical)
Abstract
Anaerobic methanotrophic (ANME) archaea have recently been reported to be capable of using insoluble extracellular electron acceptors via extracellular electron transfer (EET). In this study, we investigated EET by a microbial community dominated by “Candidatus Methanoperedens” archaea at the anode of a bioelectrochemical system (BES) poised at 0 V vs. standard hydrogen electrode (SHE), in this way measuring current as a direct proxy of EET by this community. After inoculation of the BES, the maximum current density was 274 mA m–2 (stable current up to 39 mA m–2). Concomitant conversion of 13CH4 into 13CO2 demonstrated that current production was methane-dependent, with 38% of the current attributed directly to methane supply. Based on the current production and methane uptake in a closed system, the Coulombic efficiency was about 17%. Polarization curves demonstrated that the current was limited by microbial activity at potentials above 0 V. The metatranscriptome of the inoculum was mined for the expression of c-type cytochromes potentially used for EET, which led to the identification of several multiheme c-type cytochrome-encoding genes among the most abundant transcripts in “Ca. Methanoperedens.” Our study provides strong indications of EET in ANME archaea and describes a system in which ANME-mediated EET can be investigated under laboratory conditions, which provides new research opportunities for mechanistic studies and possibly the generation of axenic ANME cultures.

Response of the Anaerobic Methanotroph “ Candidatus Methanoperedens nitroreducens” to Oxygen Stress

Citation
Guerrero-Cruz et al. (2018). Applied and Environmental Microbiology 84 (24)
Names (1)
Ca. Methanoperedens nitroreducens
Subjects
Applied Microbiology and Biotechnology Biotechnology Ecology Food Science
Abstract
“ Candidatus Methanoperedens nitroreducens” is an anaerobic archaeon which couples the reduction of nitrate to the oxidation of methane. This microorganism is present in a wide range of aquatic environments and man-made ecosystems, such as paddy fields and wastewater treatment systems. In such environments, these archaea may experience regular oxygen exposure. However, “ Ca . Methanoperedens nitroreducens” is able to thrive under such conditions and could be applied for the simultaneous removal of dissolved methane and nitrogenous pollutants in oxygen-limited systems. To understand what machinery “ Ca . Methanoperedens nitroreducens” possesses to counteract the oxidative stress and survive, we characterized the response to oxygen exposure using a multi-omics approach.

High-Quality Draft Genome Sequence of “ Candidatus Methanoperedens sp.” Strain BLZ2, a Nitrate-Reducing Anaerobic Methane-Oxidizing Archaeon Enriched in an Anoxic Bioreactor

Citation
Berger et al. (2017). Genome Announcements 5 (46)
Names (1)
Ca. Methanoperedens
Subjects
Genetics Molecular Biology
Abstract
ABSTRACT The high-quality draft genome of “ Candidatus Methanoperedens sp.” strain BLZ2, a nitrate-reducing archaeon anaerobically oxidizing methane, is presented. The genome was obtained from an enrichment culture and measures 3.74 Mb. It harbors two nitrate reductase gene clusters, an ammonium-forming nitrite reductase, and the complete reverse methanogenesis pathway. Methane that escapes to the atmosphere acts as a potent greenhouse gas. Global methane emissions are mitigated by methanotrophs, which oxidize methane to CO 2 . “ Candidatus Methanoperedens spp.” are unique methanotrophic archaea that can perform nitrate-dependent anaerobic oxidation of methane. A high-quality draft genome sequence of only 85 contigs from this archaeon is presented here.

Draft Genome Sequence of Anammox Bacterium “Candidatus Scalindua brodae,” Obtained Using Differential Coverage Binning of Sequencing Data from Two Reactor Enrichments

Citation
Speth et al. (2015). Genome Announcements 3 (1)
Names (1)
Ca. Scalindua brodae
Subjects
Genetics Molecular Biology
Abstract
ABSTRACT We present the draft genome of anammox bacterium “ Candidatus Scalindua brodae,” which at 282 contigs is a major improvement over the highly fragmented genome assembly of related species “ Ca. Scalindua profunda” (1,580 contigs) which was previously published.

XoxF-Type Methanol Dehydrogenase from the Anaerobic Methanotroph “Candidatus Methylomirabilis oxyfera”

Citation
Wu et al. (2015). Applied and Environmental Microbiology 81 (4)
Names (1)
Methylomirabilis oxygeniifera Ts
Subjects
Applied Microbiology and Biotechnology Biotechnology Ecology Food Science
Abstract
ABSTRACT “ Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gram-negative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “ Ca . Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one so-called MxaFI-type MDH and two XoxF-type MDHs (XoxF1 and XoxF2). MxaFI MDHs represent the canonical enzymes, which are composed of two PQQ-containing large (α) subunits (MxaF) and two small (β) subunits (MxaI). XoxF MDHs are novel, ecologically widespread, but poorly investigated types of MDHs that can be phylogenetically divided into at least five different clades. The XoxF MDHs described thus far are homodimeric proteins containing a large subunit only. Here, we purified a heterotetrameric MDH from “ Ca . Methylomirabilis oxyfera” that consisted of two XoxF and two MxaI subunits. The enzyme was localized in the periplasm of “ Ca . Methylomirabilis oxyfera” cells and catalyzed methanol oxidation with appreciable specific activity and affinity ( V max of 10 μmol min −1 mg −1 protein, K m of 17 μM). PQQ was present as the prosthetic group, which has to be taken up from the environment since the known gene inventory required for the synthesis of this cofactor is lacking. The MDH from “ Ca . Methylomirabilis oxyfera” is the first representative of type 1 XoxF proteins to be described.