Langwig, Marguerite V.

Publications (2)

Expansion of Armatimonadota through marine sediment sequencing describes two classes with unique ecological roles

Carlton et al. (2023). ISME Communications 3 (1)
Names (10)
“Zipacnadum” “Zipacnadum vermilionense” “Hebobacterum” “Hebobacterum abditum” “Zipacnadia” “Zipacnadales” “Zipacnadaceae” “Hebobacteria” “Hebobacterales” “Hebobacteraceae”
General Medicine
AbstractMarine sediments comprise one of the largest environments on the planet, and their microbial inhabitants are significant players in global carbon and nutrient cycles. Recent studies using metagenomic techniques have shown the complexity of these communities and identified novel microorganisms from the ocean floor. Here, we obtained 77 metagenome-assembled genomes (MAGs) from the bacterial phylum Armatimonadota in the Guaymas Basin, Gulf of California, and the Bohai Sea, China. These MAGs comprise two previously undescribed classes within Armatimonadota, which we propose naming Hebobacteria and Zipacnadia. They are globally distributed in hypoxic and anoxic environments and are dominant members of deep-sea sediments (up to 1.95% of metagenomic raw reads). The classes described here also have unique metabolic capabilities, possessing pathways to reduce carbon dioxide to acetate via the Wood-Ljungdahl pathway (WLP) and generating energy through the oxidative branch of glycolysis using carbon dioxide as an electron sink, maintaining the redox balance using the WLP. Hebobacteria may also be autotrophic, not previously identified in Armatimonadota. Furthermore, these Armatimonadota may play a role in sulfur and nitrogen cycling, using the intermediate compounds hydroxylamine and sulfite. Description of these MAGs enhances our understanding of diversity and metabolic potential within anoxic habitats worldwide.

New globally distributed bacterial phyla within the FCB superphylum

Gong et al. (2022). Nature Communications 13 (1)
Names (24)
“Blakebacteria” “Joyebacteria” “Arandabacterum” “Blakebacterales” “Joyebacterales” “Orphanbacterota” “Blakebacteraceae” “Joyebacteraceae” “Orphanbacteria” “Blakebacterum” “Joyebacterum” “Orphanbacterales” “Blakebacterum guaymasense” “Joyebacterum haimaense” “Orphanbacteraceae” “Blakebacterota” “Arandabacterum bohaiense” “Orphanbacterum” “Arandabacteria” “Arandabacterales” “Arandabacterota” “Arandabacteraceae” “Joyebacterota” “Orphanbacterum longqiense”
General Biochemistry, Genetics and Molecular Biology General Chemistry General Physics and Astronomy Multidisciplinary
AbstractMicrobes in marine sediments play crucial roles in global carbon and nutrient cycling. However, our understanding of microbial diversity and physiology on the ocean floor is limited. Here, we use phylogenomic analyses of thousands of metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments to identify 55 MAGs that are phylogenetically distinct from previously described bacterial phyla. We propose that these MAGs belong to 4 novel bacterial phyla (Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota) and a previously proposed phylum (AABM5-125-24), all of them within the FCB superphylum. Comparison of their rRNA genes with public databases reveals that these phyla are globally distributed in different habitats, including marine, freshwater, and terrestrial environments. Genomic analyses suggest these organisms are capable of mediating key steps in sedimentary biogeochemistry, including anaerobic degradation of polysaccharides and proteins, and respiration of sulfur and nitrogen. Interestingly, these genomes code for an unusually high proportion (~9% on average, up to 20% per genome) of protein families lacking representatives in public databases. Genes encoding hundreds of these protein families colocalize with genes predicted to be involved in sulfur reduction, nitrogen cycling, energy conservation, and degradation of organic compounds. Our findings advance our understanding of bacterial diversity, the ecological roles of these bacteria, and potential links between novel gene families and metabolic processes in the oceans.