Crosslin, J. M.


Publications (7)

First Report of Zebra Chip Disease and “Candidatus Liberibacter solanacearum” on Potatoes in Idaho

Citation
Crosslin et al. (2012). Plant Disease 96 (3)
Names
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
In September 2011, potato (Solanum tuberosum L.) tubers graded in a packing facility in south-central Idaho were observed with internal discolorations suggestive of zebra chip disease (ZC). Symptoms were observed in 1 to 2% of tubers of cv. Russet Norkotah and included brown spots and streaks especially in and near the vascular tissue. Some tubers also showed a dark and sunken stolon attachment typical of ZC (1). Initially, tissue samples were taken from seven symptomatic tubers and tested by PCR for “Candidatus Liberibacter solanacearum”, the bacterium associated with ZC. Primers specific for the 16S rDNA (primers CLipoF [4] and OI2c [3]) and the outer membrane protein (OMB 1482f and 2086r) (2) were used. Six of these samples were positive for the bacterium. The amplified 16S rDNA and OMB products from two symptomatic tubers of cv. Russet Norkotah were cloned and three clones of each were sequenced. The 16S sequences (1,071 bp; GenBank Accession Nos. JN848755 and JN848756) from the two tubers varied by one nucleotide and had 99 to 100% sequence identity to numerous “Ca. L. solanacearum” sequences in GenBank (e.g., Accession Nos. HM246509, FJ957897, and EU935004). Sequences of the two OMB clones (605 bp; GenBank Accession Nos. JN848757 and JN848758) had 97% sequence identity to the two “Ca. L. solanacearum” OMB sequences in GenBank (Accession Nos. CP002371 and FJ914617). Six of eight additional symptomatic field-collected cv. Russet Norkotah tubers corresponding to tubers collected in the packing facility were also positive for “Ca. L. solanacearum” by PCR. Additional severely symptomatic tubers of cvs. Russet Burbank, Yukon Gold, and raw cut French fries of Ranger Russet produced in south-central Idaho were subsequently tested by PCR and were found to be positive for “Ca. L. solanacearum” as well. On the basis of the symptoms, specific PCR amplification with two distinct primer pairs and DNA sequence analysis, zebra chip disease caused by “Ca. L. solanacearum” was determined to be present in Idaho. This disease has caused significant economic damage to potatoes in many regions, including Texas, Mexico, Central America, and New Zealand (1). Idaho is the largest potato-producing state in the United States, with over 150,000 ha planted this year, and therefore, ZC potentially poses a significant risk to agriculture in this state. References: (1) J. M. Crosslin et al. Online publication. doi:10.1094/PHP-2010-0317-01-RV, Plant Health Progress, 2010. (2) J. M. Crosslin et al. Southwest. Entomol. 36:125, 2011. (3) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (4) G. A. Secor. Plant Dis. 93:574, 2009.

First Report of Zebra Chip Disease and “Candidatus Liberibacter solanacearum” on Potatoes in Oregon and Washington State

Citation
Crosslin et al. (2012). Plant Disease 96 (3)
Names
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
In August of 2011, potato (Solanum tuberosum) tubers grown in the lower Columbia Basin of southern Washington State and northern Oregon were observed with internal discolorations suggestive of zebra chip disease (ZC). Symptoms included brown spots, streaks, and stripes in and near the vascular tissue, typical of ZC (1). Symptoms were observed in cvs. Alturas, Russet Norkotah, Pike, Ranger Russet, Umatilla Russet, and Russet Burbank. Foliar symptoms on plants that produced symptomatic tubers included purple discoloration in upper leaves, leaf rolling, axial bud elongation, chlorosis, leaf scorch, and wilt. Tissue was taken from two symptomatic tubers each of cvs. Alturas and Russet Norkotah, three tubers of cv. Umatilla Russet, and one tuber of cv. Pike. These tubers were tested by PCR for “Candidatus Liberibacter solanacearum”, an unculturable alphaproteobacterium associated with ZC (1,4). Primers specific for the 16S rDNA were CLipoF (4) and OI2c (3), and primers OMB 1482f and 2086r were specific for the outer membrane protein (2). All of these samples, except one Umatilla tuber, were positive for the bacterium. The 16S rDNA and OMB amplicons from one symptomatic tuber each of Alturas (from Washington) and Pike (from Oregon) were cloned and three clones of each were sequenced. BLAST analysis of the consensus sequences confirmed “Ca. L. solanacearum”. The 16S sequences (1,071 bp) from the two tubers were identical and showed 99 to 100% identity to a number of 16S rDNA sequences of “Ca. L. solanaceaum” in GenBank (e.g., Accession Nos. HM246509 and FJ957897). The 16S rDNA sequences were deposited in GenBank as Accession Nos. JN848751 and JN848753. Consensus sequences of the two OMB clones (605 bp; deposited in GenBank as Accession Nos. JN848752 and JN848754) were identical and showed 97% identity to the two “Ca. L. solanacearum” OMB sequences in GenBank (Accession Nos. CP002371 and FJ914617). Potato psyllids (Bactericera cockerelli Sulc), the vector of “Ca. L. solanacearum”, were present in ZC-affected fields in Oregon and Washington and the bacterium was confirmed by PCR in 5 to 10% of 128 adult psyllids collected from two fields. On the basis of foliar and tuber symptoms, specific PCR amplification with two primer pairs, sequence analyses, and the presence of Liberibacter-infected potato psyllids, ZC and “Ca. L. solanacearum” are present in potatoes in Oregon and Washington State. Washington and Oregon together grow ~80,000 ha of potatoes. ZC has caused significant economic damage to potatoes in Texas, Mexico, Central America, and New Zealand (1). Therefore, ZC may pose a risk to agriculture in Oregon, Washington, and neighboring states. However, the potential for development of widespread and serious disease will depend upon the arrival time and number of infective potato psyllids entering the region. References: (1) J. M. Crosslin et al. Online publication. doi:10.1094/PHP-2010-0317-01-RV, Plant Health Progress, 2010. (2) J. M. Crosslin et al. Southwest. Entomol. 36:125, 2011. (3) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (4) G. A. Secor. Plant Dis. 93:574, 2009.

First Report of “Candidatus Liberibacter solanacearum” in Tomato Plants in México

Citation
Munyaneza et al. (2009). Plant Disease 93 (10)
Names
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
Tomato (Solanum lycopersicum) plants exhibiting symptoms resembling those of permanent yellowing disease (known in Mexico as “permanente del tomate”) that is commonly associated with phytoplasmas (1) were observed in tomato fields in Sinaloa, México in March 2009. Plant symptoms also resembled those caused by “Candidatus Liberibacter solanacearum” infection (2). Affected plants showed an overall chlorosis, severe stunting, leaf cupping, purple discoloration of veins, excessive branching of axillary shoots, and leaf scorching (1,2). Symptom incidence ranged from 18 to 40%. To investigate whether liberibacter is associated with permanent yellowing disease of tomato in México, eight symptomatic and five asymptomatic tomato plants were collected from two fields in La Cruz de Elota and Culiacán, Sinaloa. Total DNA was extracted from the top whole leaf tissue of symptomatic and asymptomatic plants with cetyltrimethylammoniumbromide (CTAB) buffer (3,4). DNA samples were tested by PCR using primer pairs OA2/OI2c and CL514F/CL514R, which amplify a sequence from the 16S rDNA and rplJ and rplL ribosomal protein genes, respectively, of “Ca. L. solanacearum” (2,4). The DNA samples were also tested for phytoplasmas with nested PCR using universal primer pairs P1/P7 and fU5/rU3 (3). DNA from five and four symptomatic plants yielded the expected 1,168-bp 16S rDNA and 669-bp rplJ/rplL amplicons, respectively, indicating the presence of liberibacter. Extracts from asymptomatic plants yielded no products with these primers. Amplicons generated from three symptomatic plants with each primer pair were cloned into pCRII-TOPO plasmid vectors (Invitrogen, Carlsbad, CA) and three clones of each of these amplicons were subsequently sequenced in both directions (ACGT, Inc., Wheeling, IL). BLAST analysis of the 16S rDNA consensus sequence (GenBank Accession No. FJ957897) showed 100% identity to 16S rDNA sequences of “Ca. L. solanacearum” amplified from S. betaceum (EU935004) and S. lycopersicum (EU834130) from New Zealand (2), and “Ca. L. psyllaurous” from potato psyllids (EU812559). The rplJ/rplL consensus sequence (GenBank Accession No. FJ957895) was 100% identical to the analogous rplJ and rplL “Ca. L. solanacearum” ribosomal protein gene sequence amplified from S. lycopersicum (EU834131) from New Zealand (2) and ‘Ca. Liberibacter’ sp. sequence amplified from zebra chip-infected potatoes from Lancaster, CA (FJ498803). No phytoplasmas were detected in the symptomatic tomato plants. To our knowledge, this is the first report of “Ca. L. solanacearum” associated with tomatoes in México. In 2008, this bacterium was detected in glasshouse tomatoes in New Zealand and caused millions of dollars in losses to the commercial glasshouse tomato industry (2). References: (1) R. L. Holguín-Peña et al. Plant Dis. 91:328, 2007. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007. (4) J. E. Munyaneza et al. Plant Dis. 93:552, 2009.

First Report of “Candidatus Liberibacter solanacearum” in Pepper Plants in México

Citation
Munyaneza et al. (2009). Plant Disease 93 (10)
Names
“Liberibacter solanacearum”
Subjects
Agronomy and Crop Science Plant Science
Abstract
Bell pepper (Capsicum annuum) plants exhibiting symptoms that resembled those of potato psyllid (Bactericera cockerelli Sulc) damage and “Candidatus Liberibacter solanacearum” infection (2) were observed in a pepper field in La Cruz de Elota, Sinaloa, México in March 2009, with an infection rate of 1.5%. Plants exhibited chlorotic or pale green apical growth and leaf cupping, sharp tapering of the leaf apex, shortened internodes, and an overall stunting (2). Total DNA was extracted from the top whole leaf tissue of nine symptomatic and five asymptomatic pepper plants with cetyltrimethylammoniumbromide (CTAB) buffer (3,4). Seven and eight of the nine selected symptomatic pepper plants yielded the expected 1,168-bp 16S rDNA and the expected 669-bp rplJ/rplL ribosomal protein gene amplicons with the “Ca. L. solanacearum” specific OA2/OI2c and CL514F/CL514R primer pairs, respectively, indicating the presence of liberibacter (2,4). Nucleic acid from asymptomatic pepper plants yielded no products with these primers. Three amplicons generated from symptomatic pepper plants with each primer pair were cloned into pCRII-TOPO plasmid vectors (Invitrogen, Carlsbad, CA) and three clones of each amplicon were sequenced in both directions (ACGT, Inc., Wheeling, IL). BLAST analysis of the 16S rDNA consensus sequence (GenBank Accession No. FJ957896) showed 100% identity to 16S rDNA sequences of “Ca. L. solanacearum” amplified from Solanum betaceum (EU935004) and S. lycopersicum (EU834130) from New Zealand (2), and “Ca. L. psyllaurous” from potato psyllids (EU812559) (1). The ribosomal protein gene consensus sequence (GenBank Accession No. FJ957894) was 100% identical to the analogous rplJ and rplL “Ca. L. solanacearum” ribosomal protein gene sequence amplified from S. lycopersicum (EU834131) from New Zealand (2) and to ‘Ca. Liberibacter’ sp. sequence amplified from zebra chip-infected potato tubers from Lancaster, CA (FJ498803). To our knowledge, this is the first report of “Ca. L. solanacearum” associated with bell pepper in México. “Ca. L. solanacearum” was first reported in tomato and pepper plants in 2008 in New Zealand, where it has resulted in plant decline and significant yield loss, resulting in millions of dollars in losses to the commercial glasshouse tomato and pepper industry (2). Zebra chip, a new and emerging potato disease associated with ‘Ca. Liberibacter’ sp., was first identified in México in 1994, where it has caused significant economic damage, often leading to abandonment of entire potato fields (3,4). References: (1) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (2) L. W. Liefting et al. Plant Dis. 93:208, 2009. (3) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007. (4) J. E. Munyaneza et al. Plant Dis. 93:552, 2009.

First Report of ‘Candidatus Liberibacter psyllaurous’ in Zebra Chip Symptomatic Potatoes from California

Citation
Crosslin, Bester (2009). Plant Disease 93 (5)
Names
Ca. Liberibacter psyllaurous
Subjects
Agronomy and Crop Science Plant Science
Abstract
A disease that severely affects processing potatoes (Solanum tuberosum L.), termed zebra chip (ZC), has been identified in several locations in the United States (Texas, Nebraska, Colorado, Kansas, New Mexico, Arizona, and Nevada), Mexico, and Central America (4). The disease name comes from the rapid oxidative darkening of freshly cut tubers and the dark stripes and blotches that occur in chips processed from infected tubers. Recently, the disorder has been associated with a new ‘Candidatus Liberibacter’ species in New Zealand (3). Also, a bacterium designated ‘Candidatus Liberibacter psyllaurous’ has been identified recently in potato plants with “psyllid yellows” symptoms that resemble foliar symptoms of ZC (2). In the fall of 2008, 10 tubers were received at the Prosser laboratory from a commercial potato grower and five had symptoms characteristic of ZC. The tubers, cv. Dakota Pearl, were grown near Lancaster in southern California. The tubers showed rapid oxidation upon slicing and the sunken stolon attachment characteristic of ZC (4). Nucleic acid was extracted from symptomatic tubers (1) and tested by PCR for ‘Ca. Liberibacter’ species with primer pairs OA2/OI2c (5′-GCGCTTATTTTTAATAGGAGCGGCA-3′ and 5′-GCCTCGCGACTTCGCAACCCAT-3′) and CL514F/R (5′-CTCTAAGATTTCGGTTGGTT-3′ and 5′-TATATCTATCGTTGCACCAG-3′), which amplify from the 16S rDNA and rplJ and rplL ribosomal protein genes, respectively (3). Four of the five tubers with distinct ZC symptoms yielded the expected amplicons with both primer pairs. Two tubers with mild internal discoloration yielded correctly sized amplicons but in lesser amounts than from the severely affected tubers. Nucleic acid from healthy potato tubers yielded no product with these primers. One clone of the 1,168-bp OA2/OI2c amplicon and two clones of the 669-bp CL514F/R amplicon from a strongly positive sample were sequenced in both directions (ACGT, Inc., Wheeling, IL). BLAST alignments of the consensus sequences of the OA2/OI2c and CL514F/R amplicons (GenBank Accessions Nos. FJ498802 and FJ498803, respectively) revealed 100% identity with analogous ‘Ca. Liberibacter’ sequences reported from ZC-symptomatic potatoes in New Zealand (GenBank Accession Nos. EU849020 and EU919514). The OA2/OI2c amplicon was also identical to a sequence of ‘Ca. Liberibacter psyllaurous’ (GenBank Accession No. EU812559) from psyllid yellows-affected potatoes in the United States (2) and also showed a 99% identity with sequences from a ‘Ca. Liberibacter’ species reported in ZC tubers from Kansas (GenBank Accession No. EU921626). Potato crops with symptoms of ZC have been observed previously in California (4), but this is the first identification of ‘Ca. Liberibacter psyllaurous’ from diseased potatoes grown in California. Since ZC was first reported in the mid- to late-1990s, information from potato growers and processors suggests that ZC is becoming more important. The disease has caused millions of dollars in losses, particularly in south Texas (4). The identification of ‘Ca. Liberibacter psyllaurous’ in California provides additional evidence that the disease is increasing in importance in other potato-growing regions. References: (1) J. M. Crosslin et al. Plant Dis. 90:663, 2006. (2) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (3) L. W. Liefting et al. Plant Dis. 92:1474, 2008. (4) J. E. Munyaneza et al. Subtrop. Plant Sci. 59:30, 2007.

First Report of ‘Candidatus Liberibacter psyllaurous’ in Potato Tubers with Zebra Chip Disease in Mexico

Citation
Munyaneza et al. (2009). Plant Disease 93 (5)
Names
Ca. Liberibacter psyllaurous
Subjects
Agronomy and Crop Science Plant Science
Abstract
Zebra Chip (ZC), an emerging disease of potato (Solanum tuberosum L.) first documented in potato fields around Saltillo in México in 1994, has been identified in the southwestern United States, México, and Central America and is causing losses of millions of dollars to the potato industry (4). Recently, this damaging potato disease was also documented in New Zealand (3). This disease is characterized by a striped pattern of necrosis in tubers produced on infected plants, and fried chips processed from these infected tubers are commercially unacceptable (4). Recent studies conducted in the United States and New Zealand have associated ZC with a new species of ‘Candidatus Liberibacter’ vectored by the potato psyllid, Bactericera cockerelli Sulc (1,3,4). A bacterium designated ‘Candidatus Liberibacter psyllaurous’ has recently been identified in potato plants with “psyllid yellows” symptoms that resemble those of ZC (2). To investigate whether liberibacter is associated with ZC in México, 11 potato (cv. Atlantic) tuber samples exhibiting strong ZC symptoms and six asymptomatic tubers were collected from a ZC-affected commercial potato field near Saltillo City, Coahuila, México in September 2008 and tested for this bacterium by PCR. Total DNA was extracted from symptomatic and asymptomatic tubers with cetyltrimethylammoniumbromide (CTAB) buffer (4). DNA samples were tested by PCR using primer pair OA2/OI2c (5′-GCGCTTATTTTTAATAGGAGCGGCA-3′ and 5′-GCCTCGCGACTTCGCAACCCAT-3′, respectively) specific for 16S rDNA and primer pair CL514F/R (5′-CTCTAAGATTTCGGTTGGTT-3′ and 5′-TATATCTATCGTTGCACCAG-3′, respectively) designed from ribosomal protein genes (3). Seven of eleven (63.7%) ZC-symptomatic tubers and one of six (16.7%) asymptomatic potatoes yielded the expected 1,168-bp 16S rDNA and 669-bp CL514F/R amplicons, indicating the presence of liberibacter. Amplicons generated from symptomatic tubers were cloned into pCR2.1-Topo plasmid vectors (Invitrogen, Carlsbad, CA) and one clone of each amplicon was sequenced in both directions (ACGT, Inc., Wheeling, IL). BLAST analysis of the ZC OA2/OI2c sequence (GenBank Accession No. FJ498806) showed 100% identity to liberibacter 16S rDNA sequences amplified from potato psyllids from Dalhart, TX and potato tubers from Garden City, KS (GenBank Accession Nos. EU921627 and EU921626, respectively). The ZC CL514F/R sequence (GenBank Accession No. FJ498807) was 98% identical to analogous rplJ and rplL liberibacter ribosomal protein gene sequences amplified from several solanaceous plants in New Zealand (GenBank Accession Nos. EU834131 and EU935005). The OA2/OI2c sequence was also identical to the 16S rDNA sequence (Genbank Accession No. EU812559) of ‘Ca. Liberibacter psyllaurous’ (2). To our knowledge, this is the first report of ‘Ca. Liberibacter psyllaurous’ associated with ZC-affected potatoes in México. References: (1) J. A. Abad et al. Plant Dis. 93:108, 2009. (2) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (3) L. W. Liefting et al. Plant Dis. 92:1474, 2008. (4) J. E. Munyaneza et al. J. Econ. Entomol. 100:656, 2007.