Mandadi, Kranthi


Publications (3)

A Perspective on Current Therapeutic Molecule Screening Methods Against ‘Candidatus Liberibacter asiaticus’, the Presumed Causative Agent of Citrus Huanglongbing

Citation
Kennedy et al. (2023). Phytopathology® 113 (7)
Names (1)
Ca. Liberibacter asiaticus
Subjects
Agronomy and Crop Science Plant Science
Abstract
Huanglongbing (HLB), referred to as citrus greening disease, is a bacterial disease impacting citrus production worldwide and is fatal to young trees and mature trees of certain varieties. In some areas, the disease is devastating the citrus industry. A successful solution to HLB will be measured in economics: citrus growers need treatments that improve tree health, fruit production, and most importantly, economic yield. The profitability of citrus groves is the ultimate metric that truly matters when searching for solutions to HLB. Scientific approaches used in the laboratory, greenhouse, or field trials are critical to the discovery of those solutions and to estimate the likelihood of success of a treatment aimed at commercialization. Researchers and the citrus industry use a number of proxy evaluations of potential HLB solutions; understanding the strengths and limitations of each assay, as well as how best to compare different assays, is critical for decision-making to advance therapies into field trials and commercialization. This perspective aims to help the reader compare and understand the limitations of different proxy evaluation systems based on the treatment and evaluation under consideration. The researcher must determine the suitability of one or more of these metrics to identify treatments and predict the usefulness of these treatments in having an eventual impact on citrus production and HLB mitigation. As therapies advance to field trials in the next few years, a reevaluation of these metrics will be useful to guide future research efforts on strategies to mitigate HLB and vascular bacterial pathogens in other perennial crops.

Inoculation of Tomato With Plant Growth Promoting Rhizobacteria Affects the Tomato—Potato Psyllid—Candidatus Liberibacter Solanacearum Interactions

Citation
de Leon et al. (2023). Journal of Economic Entomology 116 (2)
Names (2)
“Liberibacter solanacearum” Liberibacter
Subjects
Ecology General Medicine Insect Science
Abstract
Abstract The Rio Grande Valley (RGV) in southern Texas is well-suited for vegetable production due to its relatively mild/warm weather conditions in the fall and winter. Consequently, insects inflict year-round, persistent damage to crops in the RGV and regions with similar climate. Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), commonly known as the potato psyllid, is a known vector of Candidatus Liberibacter solanacearum (CLso) (Hyphomicrobiales: Rhizobiaceae), a fastidious phloem-limited bacterium associated to vein-greening in tomatoes and Zebra Chip in potatoes. Vector control is the primary approach of integrated pest management (IPM) strategies that aim to prevent plant diseases in commercial agricultural systems. However, resistance-selective pressures that decrease the effectiveness of chemical control (insecticide) applications over time are of increasing concern. Therefore, we explore an ecological approach to devising alternative IPM methodologies to manage the psyllid-transmitted CLso pathogen to supplement existing chemical products and application schedules without increasing resistance. In this study, our objective was to examine the effects of plant-growth promoting rhizobacteria (PGPR) on host-vector-pathogen interactions. Soil-drench applications of PGPRs to Solanum lycopersicum (Solanales: Solanaceae) seedlings revealed structural and possible physiological changes to the plant host and indirect changes on psyllid behavior: host plants had increased length and biomass of roots and exhibited delayed colonization by CLso, while psyllids displayed changes in parental (F0) psyllid behavior (orientation and oviposition) in response to treated hosts and in the sex ratio of their progeny (F1). Based on our results, we suggest that PGPR may have practical use in commercial tomato production.