Williams, Tom A.


Publications
2

Recovery of Lutacidiplasmatales archaeal order genomes suggests convergent evolution in Thermoplasmatota

Citation
Sheridan et al. (2022). Nature Communications 13 (1)
Names
“Lutacidiplasmatales” “Lutacidiplasma silvani” “Lutacidiplasma” “Lutacidiplasmataceae”
Abstract
AbstractThe Terrestrial Miscellaneous Euryarchaeota Group has been identified in various environments, and the single genome investigated thus far suggests that these archaea are anaerobic sulfite reducers. We assemble 35 new genomes from this group that, based on genome analysis, appear to possess aerobic and facultative anaerobic lifestyles and may oxidise rather than reduce sulfite. We propose naming this order (representing 16 genera) “Lutacidiplasmatales” due to their occurrence in various

Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution

Citation
Dombrowski et al. (2020). Nature Communications 11 (1)
Names
“Undinarchaeia” “Undinarchaeota” “Naiadarchaeales” “Undinarchaeales” “Naiadarchaeaceae” “Undinarchaeaceae” “Undinarchaeum marinum”
Abstract
AbstractThe recently discovered DPANN archaea are a potentially deep-branching, monophyletic radiation of organisms with small cells and genomes. However, the monophyly and early emergence of the various DPANN clades and their role in life’s evolution are debated. Here, we reconstructed and analysed genomes of an uncharacterized archaeal phylum (CandidatusUndinarchaeota), revealing that its members have small genomes and, while potentially being able to conserve energy through fermentation, like