Köstlbacher, Stephan


Publications (3)

Phylogenomics and ancestral reconstruction of Korarchaeota reveals genomic adaptation to habitat switching

Citation
Tahon et al. [posted content, 2023]
Names (10)
“Hydrocaminikoraceae” “Thermotainarokora taketomiensis” “Thermotainarokora guaymasensis” “Thermotainarokoraceae” “Caldabyssikora guaymasensis” “Caldabyssikora taketomiensis” “Caldabyssikoraceae” “Korarchaeum” “Caldabyssikora” “Korarchaeum calidifontum”
Abstract
AbstractOur knowledge of archaeal diversity and evolution has expanded rapidly in the past decade. However, hardly any genomes of the phylum Korarchaeota have been obtained due to the difficulty in accessing their natural habitats and – possibly – their limited abundance. As a result, many aspects of Korarchaeota biology, physiology and evolution remain enigmatic. Here, we expand this phylum with five high-quality metagenome-assembled genomes. This improved taxon sampling combined with sophisticated phylogenomic analyses robustly places Korarchaeota at the base of TACK and Asgard clades, revisiting the phylum’s long-assumed position. Furthermore, we observe a clear split between terrestrial and marine thermal clades. Gene tree-aware ancestral reconstructions suggest that the last Korarchaeota common ancestor was a thermophilic autotroph. In contrast, Korarchaeaceae, the lineage where environmental transitions occurred, shifted towards a heterotrophic lifestyle. Terrestrial Korarchaeota gained manycasand CARF genes indicating they may need to manage viral infections. Together, our study provides new insights into these early diverging Archaea and suggests that gradual gene gain and loss shaped their adaptation to different thermal environments.ImportanceKorarchaeota are an ancient group of archaea, but their biology, physiology and evolution have remained obscure. Analysis of five novel Korarchaeota MAGs, and publicly available reference data provides robust phylogenomic evidence that Korarchaeota are placed at the base of Asgard archaea and TACK, revisiting the phylum’s long-assumed position. Gene content reconstruction suggests a versatile thermophilic and autotrophic last Korarchaeota common ancestor. Environmental distribution surveying of public databases places all Korarchaeota in thermophilic environments and indicates that their habitat is limited to hydrothermal vents and hot springs. Our modeling indicates at least two transitions linked to habitat switching between these environments in the evolutionary history of Korarchaeota. Both are linked to a significant alteration of the inferred ancestral gene content, including a shift towards a heterotrophic and potential scavenging lifestyle. Furthermore, hot spring Korarchaeota acquired various genes participating in resistance to viruses, suggesting they may need to manage frequent viral threats.

The Fish Pathogen “Candidatus Clavichlamydia salmonicola”—A Missing Link in the Evolution of Chlamydial Pathogens of Humans

Citation
Collingro et al. (2023). Genome Biology and Evolution 15 (8)
Names (1)
“Clavichlamydia salmonicola”
Subjects
Ecology, Evolution, Behavior and Systematics Genetics
Abstract
Abstract Chlamydiae like Chlamydia trachomatis and Chlamydia psittaci are well-known human and animal pathogens. Yet, the chlamydiae are a much larger group of evolutionary ancient obligate intracellular bacteria that includes predominantly symbionts of protists and diverse animals. This makes them ideal model organisms to study evolutionary transitions from symbionts in microbial eukaryotes to pathogens of humans. To this end, comparative genome analysis has served as an important tool. Genome sequence data for many chlamydial lineages are, however, still lacking, hampering our understanding of their evolutionary history. Here, we determined the first high-quality draft genome sequence of the fish pathogen “Candidatus Clavichlamydia salmonicola”, representing a separate genus within the human and animal pathogenic Chlamydiaceae. The “Ca. Clavichlamydia salmonicola” genome harbors genes that so far have been exclusively found in Chlamydia species suggesting that basic mechanisms important for the interaction with chordate hosts have evolved stepwise in the history of chlamydiae. Thus, the genome sequence of “Ca. Clavichlamydia salmonicola” allows to constrain candidate genes to further understand the evolution of chlamydial virulence mechanisms required to infect mammals.