Chaumeil, Pierre-Alain


Publications
4

Proposal of names for 329 higher rank taxa defined in the Genome Taxonomy Database under two prokaryotic codes

Citation
Chuvochina et al. (2023). FEMS Microbiology Letters
Names
Vampirovibrionaceae Vampirovibrionales Vampirovibrionia “Binataceae” “Binatales” “Binatia” “Hydrothermia” “Hydrothermales” “Hydrothermaceae” “Azobacteroidaceae” “Bipolaricaulales” “Bipolaricaulaceae” “Bipolaricaulia” “Hepatobacteraceae” “Hepatoplasmataceae” “Johnevansiaceae” “Johnevansiales” “Kapaibacteriaceae” “Kapaibacteriales” “Magnetobacteriaceae” “Methylomirabilaceae” “Methylomirabilales” “Methylomirabilia” “Muiribacteriaceae” “Muiribacteriales” “Muiribacteriia” “Nucleicultricaceae” “Obscuribacteraceae” “Promineifilaceae” “Promineifilales” “Pseudothioglobaceae” “Puniceispirillaceae” “Puniceispirillales” “Saccharimonadaceae” “Saccharimonadales” “Tenderiaceae” “Tenderiales” “Thermobaculaceae” “Thermobaculales” “Desulforudaceae” “Methylomirabilota” “Cloacimonadia” “Cloacimonadales” “Cloacimonadaceae” “Kapaibacteriia” “Poriferisulfidales” Leptolyngbyaceae
Abstract
Abstract The Genome Taxonomy Database (GTDB) is a taxonomic framework that defines prokaryotic taxa as monophyletic groups in concatenated protein reference trees according to systematic criteria. This has resulted in a substantial number of changes to existing classifications (https://gtdb.ecogenomic.org). In the case of union of taxa, GTDB names were applied based on the priority of publication. The division of taxa or change in rank led to the formation of new Latin names above

Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life

Citation
Parks et al. (2017). Nature Microbiology 2 (11)
Names
Binatus soli Ts Binatus
Abstract
AbstractChallenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5%